Skip to contents

This function processes and analyzes the dataset to generate the populations of interest needed to perform calculations to obtain performance data.

Usage

airway_18_population(
  df = NULL,
  patient_scene_table = NULL,
  procedures_table = NULL,
  vitals_table = NULL,
  airway_table = NULL,
  response_table = NULL,
  erecord_01_col,
  incident_date_col = NULL,
  patient_DOB_col = NULL,
  epatient_15_col,
  epatient_16_col,
  eresponse_05_col,
  eprocedures_01_col,
  eprocedures_02_col,
  eprocedures_03_col,
  eprocedures_06_col,
  eairway_02_col = NULL,
  eairway_04_col = NULL,
  evitals_01_col,
  evitals_16_col
)

Arguments

df

A data frame or tibble containing the dataset to be processed. Default is NULL.

patient_scene_table

A data frame or tibble containing only ePatient and eScene fields as a fact table. Default is NULL.

procedures_table

A data frame or tibble containing only the eProcedures fields needed for this measure's calculations. Default is NULL.

vitals_table

A data frame or tibble containing only the eVitals fields needed for this measure's calculations. Default is NULL.

airway_table

A data frame or tibble containing only the eAirway fields needed for this measure's calculations. Default is NULL.

response_table

A data frame or tibble containing only the eResponse fields needed for this measure's calculations. Default is NULL.

erecord_01_col

Column name containing the unique patient record identifier.

incident_date_col

Column that contains the incident date. This defaults to NULL as it is optional in case not available due to PII restrictions.

patient_DOB_col

Column that contains the patient's date of birth. This defaults to NULL as it is optional in case not available due to PII restrictions.

epatient_15_col

Column name for patient information (exact purpose unclear).

epatient_16_col

Column name for patient information (exact purpose unclear).

eresponse_05_col

Column name for emergency response codes.

eprocedures_01_col

Column name for procedure times or other related data.

eprocedures_02_col

Column name for whether or not the procedure was performed prior to EMS care being provided.

eprocedures_03_col

Column name for procedure codes.

eprocedures_06_col

Column name for procedure success codes.

eairway_02_col

Column name for airway procedure data (datetime). Default is NULL.

eairway_04_col

Column name for airway procedure data. Default is NULL.

evitals_01_col

Column name for vital signs data (datetime).

evitals_16_col

Column name for additional vital signs data.

Value

A list that contains the following:

  • a tibble with counts for each filtering step,

  • a tibble for each population of interest

  • a tibble for the initial population

  • a tibble for the total dataset with computations

Author

Nicolas Foss, Ed.D., MS

Nicolas Foss, Ed.D., MS, Samuel Kordik, BBA, BS

Examples


# If you are sourcing your data from a SQL database connection
# or if you have your data in several different tables,
# you can pass table inputs versus a single data.frame or tibble

# create tables to test correct functioning

  # patient table
  patient_table <- tibble::tibble(

    erecord_01 = rep(c("R1", "R2", "R3", "R4", "R5"), 2),
    incident_date = rep(as.Date(c("2025-01-01", "2025-01-05", "2025-02-01",
    "2025-01-01", "2025-06-01")), 2),
    patient_dob = rep(as.Date(c("2000-01-01", "2020-01-01", "2023-02-01",
                                "2023-01-01", "1970-06-01")), 2),
    epatient_15 = rep(c(25, 5, 2, 2, 55), 2),  # Ages
    epatient_16 = rep(c("Years", "Years", "Years", "Years", "Years"), 2)

  )

  # response table
  response_table <- tibble::tibble(

    erecord_01 = rep(c("R1", "R2", "R3", "R4", "R5"), 2),
    eresponse_05 = rep(2205001, 10)

  )

  # vitals table
  vitals_table <- tibble::tibble(

    erecord_01 = rep(c("R1", "R2", "R3", "R4", "R5"), 2),
    evitals_01 = lubridate::as_datetime(c("2025-01-01 23:02:00",
    "2025-01-05 12:03:00", "2025-02-01 19:04:00", "2025-01-01 05:05:00",
    "2025-06-01 13:01:00", "2025-01-01 23:02:00",
    "2025-01-05 12:03:00", "2025-02-01 19:04:00", "2025-01-01 05:05:00",
    "2025-06-01 13:06:00")),
    evitals_16 = rep(c(5, 6, 7, 8, 9), 2)

  )

  # airway table
  airway_table <- tibble::tibble(
  erecord_01 = rep(c("R1", "R2", "R3", "R4", "R5"), 2),
  eairway_02 = rep(lubridate::as_datetime(c("2025-01-01 23:05:00",
    "2025-01-05 12:02:00", "2025-02-01 19:03:00", "2025-01-01 05:04:00",
    "2025-06-01 13:06:00")), 2),
  eairway_04 = rep(4004019, 10)
  )

  # procedures table
  procedures_table <- tibble::tibble(

    erecord_01 = rep(c("R1", "R2", "R3", "R4", "R5"), 2),
    eprocedures_01 = rep(lubridate::as_datetime(c("2025-01-01 23:00:00",
    "2025-01-05 12:00:00", "2025-02-01 19:00:00", "2025-01-01 05:00:00",
    "2025-06-01 13:00:00")), 2),
    eprocedures_02 = rep("No", 10),
    eprocedures_03 = rep(c(16883004, 112798008, 78121007, 49077009,
                           673005), 2),
    eprocedures_06 = rep(9923003, 10)

  )

# Run the function
result <- airway_18_population(df = NULL,
         patient_scene_table = patient_table,
         procedures_table = procedures_table,
         vitals_table = vitals_table,
         response_table = response_table,
         airway_table = airway_table,
         erecord_01_col = erecord_01,
         incident_date_col = incident_date,
         patient_DOB_col = patient_dob,
         epatient_15_col = epatient_15,
         epatient_16_col = epatient_16,
         eresponse_05_col = eresponse_05,
         eprocedures_01_col = eprocedures_01,
         eprocedures_02_col = eprocedures_02,
         eprocedures_03_col = eprocedures_03,
         eprocedures_06_col = eprocedures_06,
         evitals_01_col = evitals_01,
         evitals_16_col = evitals_16,
         eairway_02_col = eairway_02,
         eairway_04_col = eairway_04
         )
#> Running `airway_18_population()`  [Working on 1 of 13 tasks] ●●●───────────────
#> Running `airway_18_population()`  [Working on 2 of 13 tasks] ●●●●●●────────────
#> Running `airway_18_population()`  [Working on 3 of 13 tasks] ●●●●●●●●──────────
#> Running `airway_18_population()`  [Working on 4 of 13 tasks] ●●●●●●●●●●────────
#> Running `airway_18_population()`  [Working on 5 of 13 tasks] ●●●●●●●●●●●●●─────
#> Running `airway_18_population()`  [Working on 6 of 13 tasks] ●●●●●●●●●●●●●●●───
#> Running `airway_18_population()`  [Working on 7 of 13 tasks] ●●●●●●●●●●●●●●●●●
#> Running `airway_18_population()`  [Working on 8 of 13 tasks] ●●●●●●●●●●●●●●●●●●
#> Running `airway_18_population()`  [Working on 9 of 13 tasks] ●●●●●●●●●●●●●●●●●●
#> Running `airway_18_population()`  [Working on 10 of 13 tasks] ●●●●●●●●●●●●●●●●●
#> Running `airway_18_population()`  [Working on 11 of 13 tasks] ●●●●●●●●●●●●●●●●●
#> Running `airway_18_population()`  [Working on 12 of 13 tasks] ●●●●●●●●●●●●●●●●●
#> Running `airway_18_population()`  [Working on 13 of 13 tasks] ●●●●●●●●●●●●●●●●●
#> 

# show the results of filtering at each step
result$filter_process
#> # A tibble: 12 × 2
#>    filter                                                                  count
#>    <chr>                                                                   <dbl>
#>  1 Invasive airway procedures                                                  5
#>  2 Successful invasive airway procedures                                       5
#>  3 911 calls                                                                   5
#>  4 Successful invasive airway procedures performed after EMS arrival           5
#>  5 Waveform ETCO2 used                                                         5
#>  6 Airway device placement confirmed after airway procedure                    5
#>  7 Vitals taken after airway procedure where waveform ETCO2 >= 5               5
#>  8 Waveform ETCO2 >= 5                                                         6
#>  9 Successful invasive airway procedures with waveform ETCO2 confirmed po…     5
#> 10 Adults denominator                                                          2
#> 11 Peds denominator                                                            3
#> 12 Total procedures in dataset                                                 5