The hypoglycemia_01
function calculates the NEMSQA measure evaluating how
often hypoglycemic patients with altered mental status receive hypoglycemia
treatment.
Usage
hypoglycemia_01(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
vitals_table = NULL,
medications_table = NULL,
procedures_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
esituation_11_col,
esituation_12_col,
evitals_18_col,
evitals_23_col,
evitals_26_col,
emedications_03_col,
eprocedures_03_col,
confidence_interval = FALSE,
method = c("wilson", "clopper-pearson"),
conf.level = 0.95,
correct = TRUE,
...
)
Arguments
- df
A data frame or tibble containing emergency response records. Default is
NULL
.- patient_scene_table
A data.frame or tibble containing at least ePatient and eScene fields as a fact table. Default is
NULL
.- response_table
A data.frame or tibble containing at least the eResponse fields needed for this measure's calculations. Default is
NULL
.- situation_table
A data.frame or tibble containing at least the eSituation fields needed for this measure's calculations. Default is
NULL
.- vitals_table
A data.frame or tibble containing at least the eVitals fields needed for this measure's calculations. Default is
NULL
.- medications_table
A data.frame or tibble containing at least the eMedications fields needed for this measure's calculations. Default is
NULL
.- procedures_table
A data.frame or tibble containing at least the eProcedures fields needed for this measure's calculations. Default is
NULL
.- erecord_01_col
Column representing the unique record identifier.
- incident_date_col
Column that contains the incident date. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- patient_DOB_col
Column that contains the patient's date of birth. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- epatient_15_col
Column representing the patient's numeric age agnostic of unit.
- epatient_16_col
Column representing the patient's age unit ("Years", "Months", "Days", "Hours", or "Minute").
- eresponse_05_col
Column containing response type codes.
- esituation_11_col
Column for primary impression fields, containing ICD-10 codes.
- esituation_12_col
Column for secondary impression fields, containing ICD-10 codes.
- evitals_18_col
Column for blood glucose levels.
- evitals_23_col
Column for Glasgow Coma Scale (GCS) scores.
- evitals_26_col
Column for AVPU alertness levels.
- emedications_03_col
Column for administered medications.
- eprocedures_03_col
Column for procedures performed.
- confidence_interval
Logical. If
TRUE
, the function calculates a confidence interval for the proportion estimate.- method
Character. Specifies the method used to calculate confidence intervals. Options are
"wilson"
(Wilson score interval) and"clopper-pearson"
(exact binomial interval). Partial matching is supported, so"w"
and"c"
can be used as shorthand.- conf.level
Numeric. The confidence level for the interval, expressed as a proportion (e.g., 0.95 for a 95% confidence interval). Defaults to 0.95.
- correct
Logical. If
TRUE
, applies a continuity correction to the Wilson score interval whenmethod = "wilson"
. Defaults toTRUE
.- ...
optional additional arguments to pass onto
dplyr::summarize
.
Value
A data.frame summarizing results for two population groups (All, Adults and Peds) with the following columns:
pop
: Population type (All, Adults, and Peds).numerator
: Count of incidents meeting the measure.denominator
: Total count of included incidents.prop
: Proportion of incidents meeting the measure.prop_label
: Proportion formatted as a percentage with a specified number of decimal places.lower_ci
: Lower bound of the confidence interval forprop
(ifconfidence_interval = TRUE
).upper_ci
: Upper bound of the confidence interval forprop
(ifconfidence_interval = TRUE
).
Examples
# Synthetic test data
test_data <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_11 = c(rep("E13.64", 3), rep("E16.2", 2)),
esituation_12 = c(rep("E13.64", 2), rep("E16.2", 3)),
emedications_03 = c(372326, 376937,
377980, 4850,
4832),
evitals_18 = c(60, 59, 58, 57, 56),
evitals_23 = c(16, 15, 14, 13, 12),
evitals_26 = c("Alert", "Painful", "Verbal", "Unresponsive", "Alert"),
eprocedures_03 = rep("710925007", 5)
)
# Run the function
# Return 95% confidence intervals using the Wilson method
hypoglycemia_01(
df = test_data,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_11_col = esituation_11,
esituation_12_col = esituation_12,
emedications_03_col = emedications_03,
evitals_18_col = evitals_18,
evitals_23_col = evitals_23,
evitals_26_col = evitals_26,
eprocedures_03_col = eprocedures_03,
confidence_interval = TRUE
)
#>
#> ── Hypoglycemia-01 ─────────────────────────────────────────────────────────────
#>
#> ── Gathering Records for Hypoglycemia-01 ──
#>
#> Running `hypoglycemia_01_population()` [Working on 1 of 17 tasks] ●●●─────────…
#> Running `hypoglycemia_01_population()` [Working on 2 of 17 tasks] ●●●●●───────…
#> Running `hypoglycemia_01_population()` [Working on 3 of 17 tasks] ●●●●●●──────…
#> Running `hypoglycemia_01_population()` [Working on 4 of 17 tasks] ●●●●●●●●────…
#> Running `hypoglycemia_01_population()` [Working on 5 of 17 tasks] ●●●●●●●●●●──…
#> Running `hypoglycemia_01_population()` [Working on 6 of 17 tasks] ●●●●●●●●●●●●…
#> Running `hypoglycemia_01_population()` [Working on 7 of 17 tasks] ●●●●●●●●●●●●…
#> Running `hypoglycemia_01_population()` [Working on 8 of 17 tasks] ●●●●●●●●●●●●…
#> Running `hypoglycemia_01_population()` [Working on 9 of 17 tasks] ●●●●●●●●●●●●…
#> Running `hypoglycemia_01_population()` [Working on 10 of 17 tasks] ●●●●●●●●●●●…
#> Running `hypoglycemia_01_population()` [Working on 11 of 17 tasks] ●●●●●●●●●●●…
#> Running `hypoglycemia_01_population()` [Working on 12 of 17 tasks] ●●●●●●●●●●●…
#> Running `hypoglycemia_01_population()` [Working on 13 of 17 tasks] ●●●●●●●●●●●…
#> Running `hypoglycemia_01_population()` [Working on 14 of 17 tasks] ●●●●●●●●●●●…
#> Running `hypoglycemia_01_population()` [Working on 15 of 17 tasks] ●●●●●●●●●●●…
#> Running `hypoglycemia_01_population()` [Working on 16 of 17 tasks] ●●●●●●●●●●●…
#> Running `hypoglycemia_01_population()` [Working on 17 of 17 tasks] ●●●●●●●●●●●…
#>
#>
#>
#> ── Calculating Hypoglycemia-01 ──
#>
#>
#> ✔ Function completed in 0.24s.
#>
#> Warning: In `prop.test()`: Chi-squared approximation may be incorrect for any n < 10.
#> # A tibble: 3 × 8
#> measure pop numerator denominator prop prop_label lower_ci upper_ci
#> <chr> <chr> <int> <int> <dbl> <chr> <dbl> <dbl>
#> 1 Hypoglycemia-01 Adul… 2 2 1 100% 0.198 1
#> 2 Hypoglycemia-01 Peds 2 2 1 100% 0.198 1
#> 3 Hypoglycemia-01 All 4 4 1 100% 0.396 1