The respiratory_01
function filters and analyzes data related to emergency
911 respiratory distress incidents, providing summary statistics for adult
and pediatric populations. This function uses specific data columns for 911
response codes, primary and secondary impressions, and vital signs to
calculate the proportion of cases with complete vital signs recorded,
stratified by age.
Usage
respiratory_01(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
vitals_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
esituation_11_col,
esituation_12_col,
evitals_12_col,
evitals_14_col,
confidence_interval = FALSE,
method = c("wilson", "clopper-pearson"),
conf.level = 0.95,
correct = TRUE,
...
)
Arguments
- df
A data frame containing incident data with each row representing an observation.
- patient_scene_table
A data.frame or tibble containing at least epatient and escene fields as a fact table.
- response_table
A data.frame or tibble containing at least the eresponse fields needed for this measure's calculations.
- situation_table
A data.frame or tibble containing at least the esituation fields needed for this measure's calculations.
- vitals_table
A data.frame or tibble containing at least the evitals fields needed for this measure's calculations.
- erecord_01_col
Unique Patient ID
- incident_date_col
Column that contains the incident date. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- patient_DOB_col
Column that contains the patient's date of birth. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- epatient_15_col
Column giving the calculated age value.
- epatient_16_col
Column giving the provided age unit value.
- eresponse_05_col
Column name for 911 response codes (e.g., 2205001, 2205003, 2205009).
- esituation_11_col
Column name for primary impression codes related to respiratory distress.
- esituation_12_col
Column name for secondary impression codes related to respiratory distress.
- evitals_12_col
Column name for the first vital sign measurement.
- evitals_14_col
Column name for the second vital sign measurement.
- confidence_interval
Logical. If
TRUE
, the function calculates a confidence interval for the proportion estimate.- method
Character. Specifies the method used to calculate confidence intervals. Options are
"wilson"
(Wilson score interval) and"clopper-pearson"
(exact binomial interval). Partial matching is supported, so"w"
and"c"
can be used as shorthand.- conf.level
Numeric. The confidence level for the interval, expressed as a proportion (e.g., 0.95 for a 95% confidence interval). Defaults to 0.95.
- correct
Logical. If
TRUE
, applies a continuity correction to the Wilson score interval whenmethod = "wilson"
. Defaults toTRUE
.- ...
optional additional arguments to pass onto
dplyr::summarize
.
Value
A data.frame summarizing results for two population groups (All, Adults and Peds) with the following columns:
pop
: Population type (All, Adults, and Peds).numerator
: Count of incidents meeting the measure.denominator
: Total count of included incidents.prop
: Proportion of incidents meeting the measure.prop_label
: Proportion formatted as a percentage with a specified number of decimal places.lower_ci
: Lower bound of the confidence interval forprop
(ifconfidence_interval = TRUE
).upper_ci
: Upper bound of the confidence interval forprop
(ifconfidence_interval = TRUE
).
Examples
# Synthetic test data
test_data <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_11 = c(rep("J80", 3), rep("I50.9", 2)),
esituation_12 = c(rep("J80", 2), rep("I50.9", 3)),
evitals_12 = c(60, 59, 58, 57, 56),
evitals_14 = c(16, 15, 14, 13, 12)
)
# Run the function
# Return 95% confidence intervals using the Wilson method
respiratory_01(
df = test_data,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_11_col = esituation_11,
esituation_12_col = esituation_12,
evitals_12_col = evitals_12,
evitals_14_col = evitals_14,
confidence_interval = TRUE
)
#>
#> ── Respiratory-01 ──────────────────────────────────────────────────────────────
#>
#> ── Gathering Records for Respiratory-01 ──
#>
#> Running `respiratory_01_population()` [Working on 1 of 13 tasks] ●●●──────────…
#> Running `respiratory_01_population()` [Working on 2 of 13 tasks] ●●●●●●───────…
#> Running `respiratory_01_population()` [Working on 3 of 13 tasks] ●●●●●●●●─────…
#> Running `respiratory_01_population()` [Working on 4 of 13 tasks] ●●●●●●●●●●───…
#> Running `respiratory_01_population()` [Working on 5 of 13 tasks] ●●●●●●●●●●●●●…
#> Running `respiratory_01_population()` [Working on 6 of 13 tasks] ●●●●●●●●●●●●●…
#> Running `respiratory_01_population()` [Working on 7 of 13 tasks] ●●●●●●●●●●●●●…
#> Running `respiratory_01_population()` [Working on 8 of 13 tasks] ●●●●●●●●●●●●●…
#> Running `respiratory_01_population()` [Working on 9 of 13 tasks] ●●●●●●●●●●●●●…
#> Running `respiratory_01_population()` [Working on 10 of 13 tasks] ●●●●●●●●●●●●…
#> Running `respiratory_01_population()` [Working on 11 of 13 tasks] ●●●●●●●●●●●●…
#> Running `respiratory_01_population()` [Working on 12 of 13 tasks] ●●●●●●●●●●●●…
#> Running `respiratory_01_population()` [Working on 13 of 13 tasks] ●●●●●●●●●●●●…
#>
#>
#>
#> ── Calculating Respiratory-01 ──
#>
#>
#> ✔ Function completed in 0.2s.
#>
#> Warning: In `prop.test()`: Chi-squared approximation may be incorrect for any n < 10.
#> # A tibble: 3 × 8
#> measure pop numerator denominator prop prop_label lower_ci upper_ci
#> <chr> <chr> <int> <int> <dbl> <chr> <dbl> <dbl>
#> 1 Respiratory-01 Adults 3 3 1 100% 0.310 1
#> 2 Respiratory-01 Peds 2 2 1 100% 0.198 1
#> 3 Respiratory-01 All 5 5 1 100% 0.463 1