The respiratory_02
function calculates metrics for pediatric and adult
respiratory populations based on pre-defined criteria, such as low oxygen
saturation and specific medication or procedure codes. It returns a summary
table of the overall, pediatric, and adult populations, showing counts and
proportions.
Usage
respiratory_02(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
vitals_table = NULL,
medications_table = NULL,
procedures_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
evitals_12_col,
emedications_03_col,
eprocedures_03_col,
confidence_interval = FALSE,
method = c("wilson", "clopper-pearson"),
conf.level = 0.95,
correct = TRUE,
...
)
Arguments
- df
A data frame containing incident data with each row representing an observation.
- patient_scene_table
A data.frame or tibble containing at least epatient and escene fields as a fact table.
- response_table
A data.frame or tibble containing at least the eresponse fields needed for this measure's calculations.
- vitals_table
A data.frame or tibble containing at least the evitals fields needed for this measure's calculations.
- medications_table
A data.frame or tibble containing only the emedications fields needed for this measure's calculations.
- procedures_table
A data.frame or tibble containing only the eprocedures fields needed for this measure's calculations.
- erecord_01_col
Column name for eRecord.01, used to form a unique patient ID.
- incident_date_col
Column that contains the incident date. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- patient_DOB_col
Column that contains the patient's date of birth. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- epatient_15_col
integer Column giving the calculated age value.
- epatient_16_col
Column giving the provided age unit value.
- eresponse_05_col
Column name for response codes (e.g., incident type).
- evitals_12_col
Column name for oxygen saturation (SpO2) values.
- emedications_03_col
Column name for medication codes.
- eprocedures_03_col
Column name for procedure codes.
- confidence_interval
Logical. If
TRUE
, the function calculates a confidence interval for the proportion estimate.- method
Character. Specifies the method used to calculate confidence intervals. Options are
"wilson"
(Wilson score interval) and"clopper-pearson"
(exact binomial interval). Partial matching is supported, so"w"
and"c"
can be used as shorthand.- conf.level
Numeric. The confidence level for the interval, expressed as a proportion (e.g., 0.95 for a 95% confidence interval). Defaults to 0.95.
- correct
Logical. If
TRUE
, applies a continuity correction to the Wilson score interval whenmethod = "wilson"
. Defaults toTRUE
.- ...
optional additional arguments to pass onto
dplyr::summarize
.
Value
A data.frame summarizing results for two population groups (All, Adults and Peds) with the following columns:
pop
: Population type (All, Adults, and Peds).numerator
: Count of incidents meeting the measure.denominator
: Total count of included incidents.prop
: Proportion of incidents meeting the measure.prop_label
: Proportion formatted as a percentage with a specified number of decimal places.lower_ci
: Lower bound of the confidence interval forprop
(ifconfidence_interval = TRUE
).upper_ci
: Upper bound of the confidence interval forprop
(ifconfidence_interval = TRUE
).
Examples
# Synthetic test data
test_data <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
emedications_03 = c("Oxygen", "Oxygen", "Oxygen", "Oxygen", "Oxygen"),
evitals_12 = c(60, 59, 58, 57, 56),
eprocedures_03 = rep("applicable thing", 5)
)
# Run the function
# Return 95% confidence intervals using the Wilson method
respiratory_02(
df = test_data,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
emedications_03_col = emedications_03,
evitals_12_col = evitals_12,
eprocedures_03_col = eprocedures_03,
confidence_interval = TRUE
)
#>
#> ── Respiratory-02 ──────────────────────────────────────────────────────────────
#>
#> ── Gathering Records for Respiratory-02 ──
#>
#> Running `respiratory_02_population()` [Completed 1 of 11 tasks] ●●●●──────────…
#> Running `respiratory_02_population()` [Completed 2 of 11 tasks] ●●●●●●────────…
#> Running `respiratory_02_population()` [Completed 3 of 11 tasks] ●●●●●●●●●─────…
#> Running `respiratory_02_population()` [Completed 4 of 11 tasks] ●●●●●●●●●●●●──…
#> Running `respiratory_02_population()` [Completed 5 of 11 tasks] ●●●●●●●●●●●●●●…
#> Running `respiratory_02_population()` [Completed 6 of 11 tasks] ●●●●●●●●●●●●●●…
#> Running `respiratory_02_population()` [Completed 7 of 11 tasks] ●●●●●●●●●●●●●●…
#> Running `respiratory_02_population()` [Completed 8 of 11 tasks] ●●●●●●●●●●●●●●…
#> Running `respiratory_02_population()` [Completed 9 of 11 tasks] ●●●●●●●●●●●●●●…
#> Running `respiratory_02_population()` [Completed 10 of 11 tasks] ●●●●●●●●●●●●●…
#> Running `respiratory_02_population()` [Completed 11 of 11 tasks] ●●●●●●●●●●●●●…
#>
#>
#>
#> ── Calculating Respiratory-02 ──
#>
#>
#> ✔ Function completed in 0.17s.
#>
#> Warning: In `prop.test()`: Chi-squared approximation may be incorrect for any n < 10.
#> # A tibble: 3 × 8
#> measure pop numerator denominator prop prop_label lower_ci upper_ci
#> <chr> <chr> <int> <int> <dbl> <chr> <dbl> <dbl>
#> 1 Respiratory-02 Adults 3 3 1 100% 0.310 1
#> 2 Respiratory-02 Peds 2 2 1 100% 0.198 1
#> 3 Respiratory-02 All 5 5 1 100% 0.463 1