The respiratory_02_population
function calculates metrics for pediatric and
adult respiratory populations based on pre-defined criteria, such as low
oxygen saturation and specific medication or procedure codes. It returns a
summary table of the overall, pediatric, and adult populations, showing
counts and proportions.
Usage
respiratory_02_population(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
vitals_table = NULL,
medications_table = NULL,
procedures_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
evitals_12_col,
emedications_03_col,
eprocedures_03_col
)
Arguments
- df
A data frame containing incident data with each row representing an observation.
- patient_scene_table
A data.frame or tibble containing at least epatient and escene fields as a fact table.
- response_table
A data.frame or tibble containing at least the eresponse fields needed for this measure's calculations.
- vitals_table
A data.frame or tibble containing at least the evitals fields needed for this measure's calculations.
- medications_table
A data.frame or tibble containing only the emedications fields needed for this measure's calculations.
- procedures_table
A data.frame or tibble containing only the eprocedures fields needed for this measure's calculations.
- erecord_01_col
Column name for eRecord.01, used to form a unique patient ID.
- incident_date_col
Column that contains the incident date. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- patient_DOB_col
Column that contains the patient's date of birth. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- epatient_15_col
integer Column giving the calculated age value.
- epatient_16_col
Column giving the provided age unit value.
- eresponse_05_col
Column name for response codes (e.g., incident type).
- evitals_12_col
Column name for oxygen saturation (SpO2) values.
- emedications_03_col
Column name for medication codes.
- eprocedures_03_col
Column name for procedure codes.
Value
A list that contains the following:
a tibble with counts for each filtering step,
a tibble for each population of interest
a tibble for the initial population
a tibble for the total dataset with computations
Examples
# create tables to test correct functioning
# patient table
patient_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
incident_date = as.Date(c("2025-01-01", "2025-01-05",
"2025-02-01", "2025-01-01",
"2025-06-01")
),
patient_dob = as.Date(c("2000-01-01", "2020-01-01",
"2023-02-01", "2023-01-01",
"1970-06-01")
),
epatient_15 = c(25, 5, 2, 2, 55), # Ages
epatient_16 = c("Years", "Years", "Years", "Years", "Years")
)
# response table
response_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
eresponse_05 = rep(2205001, 5)
)
# medications table
medications_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
emedications_03 = c("Oxygen", "Oxygen", "Oxygen", "Oxygen", "Oxygen")
)
# vitals table
vitals_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
evitals_12 = c(60, 59, 58, 57, 56),
)
# procedures table
procedures_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
eprocedures_03 = rep("applicable thing", 5)
)
# Run the function
result <- respiratory_02_population(patient_scene_table = patient_table,
response_table = response_table,
medications_table = medications_table,
vitals_table = vitals_table,
procedures_table = procedures_table,
erecord_01_col = erecord_01,
incident_date_col = incident_date,
patient_DOB_col = patient_dob,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
emedications_03_col = emedications_03,
evitals_12_col = evitals_12,
eprocedures_03_col = eprocedures_03
)
#> Running `respiratory_02_population()` [Completed 1 of 11 tasks] ●●●●──────────…
#> Running `respiratory_02_population()` [Completed 2 of 11 tasks] ●●●●●●────────…
#> Running `respiratory_02_population()` [Completed 3 of 11 tasks] ●●●●●●●●●─────…
#> Running `respiratory_02_population()` [Completed 4 of 11 tasks] ●●●●●●●●●●●●──…
#> Running `respiratory_02_population()` [Completed 5 of 11 tasks] ●●●●●●●●●●●●●●…
#> Running `respiratory_02_population()` [Completed 6 of 11 tasks] ●●●●●●●●●●●●●●…
#> Running `respiratory_02_population()` [Completed 7 of 11 tasks] ●●●●●●●●●●●●●●…
#> Running `respiratory_02_population()` [Completed 8 of 11 tasks] ●●●●●●●●●●●●●●…
#> Running `respiratory_02_population()` [Completed 9 of 11 tasks] ●●●●●●●●●●●●●●…
#> Running `respiratory_02_population()` [Completed 10 of 11 tasks] ●●●●●●●●●●●●●…
#> Running `respiratory_02_population()` [Completed 11 of 11 tasks] ●●●●●●●●●●●●●…
#>
# show the results of filtering at each step
result$filter_process
#> # A tibble: 8 × 2
#> filter count
#> <chr> <int>
#> 1 Oxygen given as med 5
#> 2 Oxygen therapy procedure 0
#> 3 Pulse oximetry < 90 5
#> 4 911 calls 5
#> 5 Adults denominator 2
#> 6 Peds denominator 3
#> 7 Initial population 5
#> 8 Total dataset 5