Skip to contents

Filters data down to the target populations for Safety-02, and categorizes records to identify needed information for the calculations.

Identifies key categories related to a 911 request during which lights and sirens were not used during patient transport. This function segments the data by age into adult and pediatric populations.

Usage

safety_02_population(
  df = NULL,
  patient_scene_table = NULL,
  response_table = NULL,
  disposition_table = NULL,
  erecord_01_col,
  incident_date_col = NULL,
  patient_DOB_col = NULL,
  epatient_15_col,
  epatient_16_col,
  eresponse_05_col,
  edisposition_18_col,
  edisposition_28_col,
  transport_disposition_cols
)

Arguments

df

A data frame where each row is an observation, and each column represents a feature.

patient_scene_table

A data.frame or tibble containing only epatient and escene fields as a fact table.

response_table

A data.frame or tibble containing only the eresponse fields needed for this measure's calculations.

disposition_table

A data.frame or tibble containing only the edisposition fields needed for this measure's calculations.

erecord_01_col

The column representing the EMS record unique identifier.

incident_date_col

Column that contains the incident date. This defaults to NULL as it is optional in case not available due to PII restrictions.

patient_DOB_col

Column that contains the patient's date of birth. This defaults to NULL as it is optional in case not available due to PII restrictions.

epatient_15_col

Column giving the calculated age value.

epatient_16_col

Column giving the provided age unit value.

eresponse_05_col

Column giving response codes, identifying 911 responses.

edisposition_18_col

Column giving transport mode descriptors, including possible lights-and-sirens indicators.

edisposition_28_col

Column giving patient evaluation and care categories for the EMS response.

transport_disposition_cols

One or more unquoted column names (such as edisposition.12, edisposition.30) containing transport disposition details.

Value

A list that contains the following:

  • a tibble with counts for each filtering step,

  • a tibble for each population of interest

  • a tibble for the initial population

  • a tibble for the total dataset with computations

Author

Nicolas Foss, Ed.D., MS

Examples


# create tables to test correct functioning

  # patient table
  patient_table <- tibble::tibble(

    erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
    incident_date = as.Date(c("2025-01-01", "2025-01-05",
                              "2025-02-01", "2025-01-01",
                              "2025-06-01")
                              ),
    patient_dob = as.Date(c("2000-01-01", "2020-01-01",
                            "2023-02-01", "2023-01-01",
                            "1970-06-01")
                            ),
    epatient_15 = c(25, 5, 2, 2, 55),  # Ages
    epatient_16 = c("Years", "Years", "Years", "Years", "Years")

  )

  # response table
  response_table <- tibble::tibble(

    erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
    eresponse_05 = rep(2205001, 5)

  )

  # disposition table
  disposition_table <- tibble::tibble(
    erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
    edisposition_18 = rep(4218015, 5),
    edisposition_28 = rep(4228001, 5),
    edisposition_30 = rep(4230001, 5)
  )

  # test the success of the function
  result <- safety_02_population(patient_scene_table = patient_table,
                        response_table = response_table,
                        disposition_table = disposition_table,
                        erecord_01_col = erecord_01,
                        incident_date_col = incident_date,
                        patient_DOB_col = patient_dob,
                        epatient_15_col = epatient_15,
                        epatient_16_col = epatient_16,
                        eresponse_05_col = eresponse_05,
                        edisposition_18_col = edisposition_18,
                        edisposition_28_col = edisposition_28,
                        transport_disposition_cols = edisposition_30
                        )
#> Running `safety_02_population()`  [Working on 1 of 11 tasks] ●●●●──────────────
#> Running `safety_02_population()`  [Working on 2 of 11 tasks] ●●●●●●────────────
#> Running `safety_02_population()`  [Working on 3 of 11 tasks] ●●●●●●●●●─────────
#> Running `safety_02_population()`  [Working on 4 of 11 tasks] ●●●●●●●●●●●●──────
#> Running `safety_02_population()`  [Working on 5 of 11 tasks] ●●●●●●●●●●●●●●●───
#> Running `safety_02_population()`  [Working on 6 of 11 tasks] ●●●●●●●●●●●●●●●●●
#> Running `safety_02_population()`  [Working on 7 of 11 tasks] ●●●●●●●●●●●●●●●●●●
#> Running `safety_02_population()`  [Working on 8 of 11 tasks] ●●●●●●●●●●●●●●●●●●
#> Running `safety_02_population()`  [Working on 9 of 11 tasks] ●●●●●●●●●●●●●●●●●●
#> Running `safety_02_population()`  [Working on 10 of 11 tasks] ●●●●●●●●●●●●●●●●●
#> Running `safety_02_population()`  [Working on 11 of 11 tasks] ●●●●●●●●●●●●●●●●●
#> 

# show the results of filtering at each step
result$filter_process
#> # A tibble: 8 × 2
#>   filter                               count
#>   <chr>                                <int>
#> 1 911 calls                                5
#> 2 Patients evaluated and care provided     5
#> 3 Transport runs                           5
#> 4 No lights and sirens                     5
#> 5 Adults denominator                       2
#> 6 Peds denominator                         3
#> 7 Initial population                       5
#> 8 Total dataset                            5