The safety_04
function processes EMS incident data for specific safety and
transport criteria, filtering by patient age and incident type to identify
cases that meet specified exclusion or inclusion criteria. This function
accommodates data with various EMS-specific codes, age descriptors, and
procedure identifiers.
Usage
safety_04(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
arrest_table = NULL,
injury_table = NULL,
procedures_table = NULL,
disposition_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
earrest_01_col,
einjury_03_col,
eprocedures_03_col,
edisposition_14_col,
transport_disposition_col,
confidence_interval = FALSE,
method = c("wilson", "clopper-pearson"),
conf.level = 0.95,
correct = TRUE,
...
)
Arguments
- df
A data frame or tibble containing EMS data where each row represents an individual observation.
- patient_scene_table
A data frame or tibble containing fields from epatient and escene needed for this measure's calculations.
- response_table
A data frame or tibble containing fields from eresponse needed for this measure's calculations.
- arrest_table
A data frame or tibble containing fields from earrest needed for this measure's calculations.
- injury_table
A data frame or tibble containing fields from einjury needed for this measure's calculations.
- procedures_table
A data frame or tibble containing fields from eprocedures needed for this measure's calculations.
- disposition_table
A data frame or tibble containing fields from edisposition needed for this measure's calculations.
- erecord_01_col
The column containing unique record identifiers for each encounter.
- incident_date_col
Column that contains the incident date. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- patient_DOB_col
Column that contains the patient's date of birth. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- epatient_15_col
Column name indicating the patient age.
- epatient_16_col
Column name for the unit of age (e.g., "Years," "Months").
- eresponse_05_col
Column containing response transport codes.
- earrest_01_col
Column with cardiac arrest status information.
- einjury_03_col
Column describing traumatic injuries, expected as a list or text-separated entries.
- eprocedures_03_col
Column listing procedures, assumed to contain multiple procedure codes/texts in each cell.
- edisposition_14_col
Column for transport dispositions.
- transport_disposition_col
Columns for primary and secondary transport dispositions.
- confidence_interval
Logical. If
TRUE
, the function calculates a confidence interval for the proportion estimate.- method
Character. Specifies the method used to calculate confidence intervals. Options are
"wilson"
(Wilson score interval) and"clopper-pearson"
(exact binomial interval). Partial matching is supported, so"w"
and"c"
can be used as shorthand.- conf.level
Numeric. The confidence level for the interval, expressed as a proportion (e.g., 0.95 for a 95% confidence interval). Defaults to 0.95.
- correct
Logical. If
TRUE
, applies a continuity correction to the Wilson score interval whenmethod = "wilson"
. Defaults toTRUE
.- ...
optional additional arguments to pass onto
dplyr::summarize
.
Value
A data.frame summarizing results for two population groups (All, Adults and Peds) with the following columns:
pop
: Population type (All, Adults, and Peds).numerator
: Count of incidents meeting the measure.denominator
: Total count of included incidents.prop
: Proportion of incidents meeting the measure.prop_label
: Proportion formatted as a percentage with a specified number of decimal places.lower_ci
: Lower bound of the confidence interval forprop
(ifconfidence_interval = TRUE
).upper_ci
: Upper bound of the confidence interval forprop
(ifconfidence_interval = TRUE
).
Examples
# Synthetic test data
test_data <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
earrest_01 = rep("No", 5),
einjury_03 = rep("non-injury", 5),
edisposition_14 = rep(4214001, 5),
edisposition_30 = rep(4230001, 5),
eprocedures_03 = rep("other response", 5)
)
# Run the function
# Return 95% confidence intervals using the Wilson method
safety_04(
df = test_data,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
earrest_01_col = earrest_01,
einjury_03_col = einjury_03,
edisposition_14_col = edisposition_14,
transport_disposition_col = edisposition_30,
eprocedures_03_col = eprocedures_03,
confidence_interval = TRUE
)
#>
#> ── Safety-04 ───────────────────────────────────────────────────────────────────
#>
#> ── Gathering Records for Safety-04 ──
#>
#> Running `safety_04_population()` [Working on 1 of 13 tasks] ●●●───────────────…
#> Running `safety_04_population()` [Working on 2 of 13 tasks] ●●●●●●────────────…
#> Running `safety_04_population()` [Working on 3 of 13 tasks] ●●●●●●●●──────────…
#> Running `safety_04_population()` [Working on 4 of 13 tasks] ●●●●●●●●●●────────…
#> Running `safety_04_population()` [Working on 5 of 13 tasks] ●●●●●●●●●●●●●─────…
#> Running `safety_04_population()` [Working on 6 of 13 tasks] ●●●●●●●●●●●●●●●───…
#> Running `safety_04_population()` [Working on 7 of 13 tasks] ●●●●●●●●●●●●●●●●●─…
#> Running `safety_04_population()` [Working on 8 of 13 tasks] ●●●●●●●●●●●●●●●●●●…
#> Running `safety_04_population()` [Working on 9 of 13 tasks] ●●●●●●●●●●●●●●●●●●…
#> Running `safety_04_population()` [Working on 10 of 13 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `safety_04_population()` [Working on 11 of 13 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `safety_04_population()` [Working on 12 of 13 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `safety_04_population()` [Working on 13 of 13 tasks] ●●●●●●●●●●●●●●●●●…
#>
#>
#>
#> ── Calculating Safety-04 ──
#>
#>
#> ✔ Function completed in 0.2s.
#>
#> Warning: In `prop.test()`: Chi-squared approximation may be incorrect for any n < 10.
#> # A tibble: 1 × 8
#> measure pop numerator denominator prop prop_label lower_ci upper_ci
#> <chr> <chr> <int> <int> <dbl> <chr> <dbl> <dbl>
#> 1 Safety-04 Peds 2 2 1 100% 0.198 1