Calculates the NEMSQA Seizure-02 Measure.
Calculates age-based seizure metrics for a dataset. This function filters data for patients based on incident information, diagnoses, and administered medications to assess adherence to Seizure-02 metrics.
Usage
seizure_02(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
medications_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
esituation_11_col,
esituation_12_col,
emedications_03_col,
confidence_interval = FALSE,
method = c("wilson", "clopper-pearson"),
conf.level = 0.95,
correct = TRUE,
...
)
Arguments
- df
A data frame where each row is an observation, containing all necessary columns for analysis.
- patient_scene_table
A data frame or tibble containing only epatient and escene fields as a fact table. Default is
NULL
.- response_table
A data frame or tibble containing only the eresponse fields needed for this measure's calculations. Default is
NULL
.- situation_table
A data.frame or tibble containing only the esituation fields needed for this measure's calculations. Default is
NULL
.- medications_table
A data.frame or tibble containing only the emedications fields needed for this measure's calculations. Default is
NULL
.- erecord_01_col
The column containing unique record identifiers for each encounter.
- incident_date_col
Column that contains the incident date. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- patient_DOB_col
Column that contains the patient's date of birth. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- epatient_15_col
Column name for patient age in numeric form.
- epatient_16_col
Column name for age unit (e.g.,
"Years"
or"Months"
).- eresponse_05_col
Column name for response codes; "911" call codes are filtered.
- esituation_11_col
Column name for primary impressions.
- esituation_12_col
Column name for secondary impressions.
- emedications_03_col
Column name for medications administered; ideally a list column or string with comma-separated values.
- confidence_interval
Logical. If
TRUE
, the function calculates a confidence interval for the proportion estimate.- method
Character. Specifies the method used to calculate confidence intervals. Options are
"wilson"
(Wilson score interval) and"clopper-pearson"
(exact binomial interval). Partial matching is supported, so"w"
and"c"
can be used as shorthand.- conf.level
Numeric. The confidence level for the interval, expressed as a proportion (e.g., 0.95 for a 95% confidence interval). Defaults to 0.95.
- correct
Logical. If
TRUE
, applies a continuity correction to the Wilson score interval whenmethod = "wilson"
. Defaults toTRUE
.- ...
optional additional arguments to pass onto
dplyr::summarize
.
Value
A data.frame summarizing results for two population groups (All, Adults and Peds) with the following columns:
pop
: Population type (All, Adults, and Peds).numerator
: Count of incidents meeting the measure.denominator
: Total count of included incidents.prop
: Proportion of incidents meeting the measure.prop_label
: Proportion formatted as a percentage with a specified number of decimal places.lower_ci
: Lower bound of the confidence interval forprop
(ifconfidence_interval = TRUE
).upper_ci
: Upper bound of the confidence interval forprop
(ifconfidence_interval = TRUE
).
Examples
# Synthetic test data
test_data <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_11 = rep("G40", 5),
esituation_12 = rep("r56", 5),
emedications_03 = rep(3322, 5)
)
# Run the function
# Return 95% confidence intervals using the Wilson method
seizure_02(
df = test_data,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_11_col = esituation_11,
esituation_12_col = esituation_12,
emedications_03_col = emedications_03,
confidence_interval = TRUE
)
#>
#> ── Seizure-02 ──────────────────────────────────────────────────────────────────
#>
#> ── Gathering Records for Seizure-02 ──
#>
#> Running `seizure_02_population()` [Working on 1 of 10 tasks] ●●●●─────────────…
#> Running `seizure_02_population()` [Working on 2 of 10 tasks] ●●●●●●●──────────…
#> Running `seizure_02_population()` [Working on 3 of 10 tasks] ●●●●●●●●●●───────…
#> Running `seizure_02_population()` [Working on 4 of 10 tasks] ●●●●●●●●●●●●●────…
#> Running `seizure_02_population()` [Working on 5 of 10 tasks] ●●●●●●●●●●●●●●●●─…
#> Running `seizure_02_population()` [Working on 6 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `seizure_02_population()` [Working on 7 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `seizure_02_population()` [Working on 8 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `seizure_02_population()` [Working on 9 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `seizure_02_population()` [Working on 10 of 10 tasks] ●●●●●●●●●●●●●●●●…
#>
#>
#>
#> ── Calculating Seizure-02 ──
#>
#>
#> ✔ Function completed in 0.18s.
#>
#> Warning: In `prop.test()`: Chi-squared approximation may be incorrect for any n < 10.
#> # A tibble: 3 × 8
#> measure pop numerator denominator prop prop_label lower_ci upper_ci
#> <chr> <chr> <int> <int> <dbl> <chr> <dbl> <dbl>
#> 1 Seizure-02 Adults 3 3 1 100% 0.310 1
#> 2 Seizure-02 Peds 1 1 1 100% 0.0546 1
#> 3 Seizure-02 All 5 5 1 100% 0.463 1