Calculates measure numerator, denominator, proportions, and optional confidence intervals for a NEMSQA measure. This function summarizes the information for a specified population and measure, returning a tibble with the calculated values. If requested, the function can also calculate confidence intervals for the proportions using either the Wilson score interval or the Clopper-Pearson exact binomial interval.
Usage
summarize_measure(
data,
measure_name,
population_name,
numerator_col,
confidence_interval = FALSE,
method = c("wilson", "clopper-pearson"),
conf.level = 0.95,
correct = TRUE,
...
)
Arguments
- data
A dataframe or tibble containing the filtered and calculated fields for the population of interest.
- measure_name
A string containing the description of the measure being calculated (e.g., "Airway-01").
- population_name
A string containing the description of the population for which the measure is being calculated (e.g., "Adults", "Peds", or "All").
- numerator_col
The tidyselect column containing the numerator data for the measure (e.g., the number of cases).
- confidence_interval
A logical value indicating whether to calculate a confidence interval for the proportion estimate. Defaults to
FALSE
.- method
A string specifying the method to calculate the confidence intervals. Options are
"wilson"
(Wilson score interval) or"clopper-pearson"
(exact binomial interval). Partial matching is allowed (e.g.,"w"
or"c"
). Default is"wilson"
.- conf.level
A numeric value indicating the confidence level for the interval, expressed as a proportion (e.g., 0.95 for a 95% confidence interval). Defaults to 0.95.
- correct
A logical value specifying whether to apply continuity correction to the Wilson score interval when
method = "wilson"
. Default isTRUE
.- ...
(optional) Additional arguments passed to
nemsqa_binomial_confint
when calculating confidence intervals.
Value
A summarized data frame containing:
measure
: The measure name.pop
: The population group.numerator
: The count of qualifying events.denominator
: The total count of records.prop
: The proportion of qualifying events.prop_label
: A formatted percentage representation ofprop
(whenconfidence_interval = FALSE
).lower_ci
,upper_ci
: The lower and upper confidence interval bounds (whenconfidence_interval = TRUE
).