The syncope_01
function processes EMS dataset to identify potential syncope
(fainting) cases based on specific criteria and calculates related ECG
measures. This function dplyr::filters data for 911 response calls, assesses
primary and associated symptoms for syncope, determines age-based populations
(adult and pediatric), and aggregates results by unique patient encounters.
Usage
syncope_01(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
vitals_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
esituation_09_col,
esituation_10_col,
esituation_11_col,
esituation_12_col,
evitals_04_col,
...
)
Arguments
- df
Main data frame containing EMS records.
- patient_scene_table
A data frame or tibble containing only epatient and escene fields as a fact table. Default is
NULL
.- response_table
A data frame or tibble containing only the eresponse fields needed for this measure's calculations. Default is
NULL
.- situation_table
A data.frame or tibble containing only the esituation fields needed for this measure's calculations. Default is
NULL
.- vitals_table
A data.frame or tibble containing only the evitals fields needed for this measure's calculations. Default is
NULL
.- erecord_01_col
The column containing unique record identifiers for each encounter.
- incident_date_col
Column that contains the incident date. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- patient_DOB_col
Column that contains the patient's date of birth. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- epatient_15_col
Column representing the patient age (numeric).
- epatient_16_col
Column for the patient age units (e.g., "Years", "Months").
- eresponse_05_col
Column containing response type codes, specifically 911 codes.
- esituation_09_col
Column with primary symptoms associated with the patient encounter.
- esituation_10_col
Column with other associated symptoms.
- esituation_11_col
Column for primary impression code.
- esituation_12_col
Column for secondary impression codes.
- evitals_04_col
Column with ECG information if available.
- ...
Additional arguments passed to
dplyr::summarize
for grouped summaries.
Value
A tibble summarizing results for three population groups (Adults, and Peds) with the following columns:
measure
: The name of the measure being calculated.
pop
: Population type (Adults, Peds).
numerator
: Count of incidents where beta-agonist medications were
administered.
denominator
: Total count of incidents.
prop
: Proportion of incidents involving beta-agonist medications.
prop_label
: Proportion formatted as a percentage with a specified number
of decimal places.
Examples
# Synthetic test data
test_data <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_09 = c(rep("R55", 3), rep("R40.4", 2)),
esituation_10 = c(rep("R40.4", 2), rep("R55", 3)),
esituation_11 = c(rep("R55", 3), rep("R40.4", 2)),
esituation_12 = c(rep("R40.4", 2), rep("R55", 3)),
evitals_04 = rep("15 Lead", 5)
)
# Run function
syncope_01(
df = test_data,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_09_col = esituation_09,
esituation_10_col = esituation_10,
esituation_11_col = esituation_11,
esituation_12_col = esituation_12,
evitals_04_col = evitals_04
)
#>
#> ── Syncope-01 ──────────────────────────────────────────────────────────────────
#>
#> ── Gathering Records for Syncope-01 ──
#>
#> Running `syncope_01_population()` [Working on 1 of 10 tasks] ●●●●─────────────…
#> Running `syncope_01_population()` [Working on 2 of 10 tasks] ●●●●●●●──────────…
#> Running `syncope_01_population()` [Working on 3 of 10 tasks] ●●●●●●●●●●───────…
#> Running `syncope_01_population()` [Working on 4 of 10 tasks] ●●●●●●●●●●●●●────…
#> Running `syncope_01_population()` [Working on 5 of 10 tasks] ●●●●●●●●●●●●●●●●─…
#> Running `syncope_01_population()` [Working on 6 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `syncope_01_population()` [Working on 7 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `syncope_01_population()` [Working on 8 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `syncope_01_population()` [Working on 9 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `syncope_01_population()` [Working on 10 of 10 tasks] ●●●●●●●●●●●●●●●●…
#>
#>
#>
#> ── Calculating Syncope-01 ──
#>
#>
#> ✔ Function completed in 0.16s.
#>
#> # A tibble: 2 × 6
#> measure pop numerator denominator prop prop_label
#> <chr> <chr> <int> <int> <dbl> <chr>
#> 1 Syncope-01 Adults 3 3 1 100%
#> 2 Syncope-01 Peds 2 2 1 100%