The syncope_01
function processes EMS dataset to identify potential syncope
(fainting) cases based on specific criteria and calculates related ECG
measures. This function dplyr::filters data for 911 response calls, assesses
primary and associated symptoms for syncope, determines age-based populations
(adult and pediatric), and aggregates results by unique patient encounters.
Usage
syncope_01(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
vitals_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
esituation_09_col,
esituation_10_col,
esituation_11_col,
esituation_12_col,
evitals_04_col,
confidence_interval = FALSE,
method = c("wilson", "clopper-pearson"),
conf.level = 0.95,
correct = TRUE,
...
)
Arguments
- df
Main data frame containing EMS records.
- patient_scene_table
A data frame or tibble containing only epatient and escene fields as a fact table. Default is
NULL
.- response_table
A data frame or tibble containing only the eresponse fields needed for this measure's calculations. Default is
NULL
.- situation_table
A data.frame or tibble containing only the esituation fields needed for this measure's calculations. Default is
NULL
.- vitals_table
A data.frame or tibble containing only the evitals fields needed for this measure's calculations. Default is
NULL
.- erecord_01_col
The column containing unique record identifiers for each encounter.
- incident_date_col
Column that contains the incident date. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- patient_DOB_col
Column that contains the patient's date of birth. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- epatient_15_col
Column representing the patient age (numeric).
- epatient_16_col
Column for the patient age units (e.g., "Years", "Months").
- eresponse_05_col
Column containing response type codes, specifically 911 codes.
- esituation_09_col
Column with primary symptoms associated with the patient encounter.
- esituation_10_col
Column with other associated symptoms.
- esituation_11_col
Column for primary impression code.
- esituation_12_col
Column for secondary impression codes.
- evitals_04_col
Column with ECG information if available.
- confidence_interval
Logical. If
TRUE
, the function calculates a confidence interval for the proportion estimate.- method
Character. Specifies the method used to calculate confidence intervals. Options are
"wilson"
(Wilson score interval) and"clopper-pearson"
(exact binomial interval). Partial matching is supported, so"w"
and"c"
can be used as shorthand.- conf.level
Numeric. The confidence level for the interval, expressed as a proportion (e.g., 0.95 for a 95% confidence interval). Defaults to 0.95.
- correct
Logical. If
TRUE
, applies a continuity correction to the Wilson score interval whenmethod = "wilson"
. Defaults toTRUE
.- ...
optional additional arguments to pass onto
dplyr::summarize
.
Value
A data.frame summarizing results for two population groups (All, Adults and Peds) with the following columns:
pop
: Population type (All, Adults, and Peds).numerator
: Count of incidents meeting the measure.denominator
: Total count of included incidents.prop
: Proportion of incidents meeting the measure.prop_label
: Proportion formatted as a percentage with a specified number of decimal places.lower_ci
: Lower bound of the confidence interval forprop
(ifconfidence_interval = TRUE
).upper_ci
: Upper bound of the confidence interval forprop
(ifconfidence_interval = TRUE
).
Examples
# Synthetic test data
test_data <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_09 = c(rep("R55", 3), rep("R40.4", 2)),
esituation_10 = c(rep("R40.4", 2), rep("R55", 3)),
esituation_11 = c(rep("R55", 3), rep("R40.4", 2)),
esituation_12 = c(rep("R40.4", 2), rep("R55", 3)),
evitals_04 = rep("15 Lead", 5)
)
# Run the function
# Return 95% confidence intervals using the Wilson method
syncope_01(
df = test_data,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_09_col = esituation_09,
esituation_10_col = esituation_10,
esituation_11_col = esituation_11,
esituation_12_col = esituation_12,
evitals_04_col = evitals_04,
confidence_interval = TRUE
)
#>
#> ── Syncope-01 ──────────────────────────────────────────────────────────────────
#>
#> ── Gathering Records for Syncope-01 ──
#>
#> Running `syncope_01_population()` [Working on 1 of 10 tasks] ●●●●─────────────…
#> Running `syncope_01_population()` [Working on 2 of 10 tasks] ●●●●●●●──────────…
#> Running `syncope_01_population()` [Working on 3 of 10 tasks] ●●●●●●●●●●───────…
#> Running `syncope_01_population()` [Working on 4 of 10 tasks] ●●●●●●●●●●●●●────…
#> Running `syncope_01_population()` [Working on 5 of 10 tasks] ●●●●●●●●●●●●●●●●─…
#> Running `syncope_01_population()` [Working on 6 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `syncope_01_population()` [Working on 7 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `syncope_01_population()` [Working on 8 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `syncope_01_population()` [Working on 9 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `syncope_01_population()` [Working on 10 of 10 tasks] ●●●●●●●●●●●●●●●●…
#>
#>
#>
#> ── Calculating Syncope-01 ──
#>
#>
#> ✔ Function completed in 0.16s.
#>
#> Warning: In `prop.test()`: Chi-squared approximation may be incorrect for any n < 10.
#> # A tibble: 2 × 8
#> measure pop numerator denominator prop prop_label lower_ci upper_ci
#> <chr> <chr> <int> <int> <dbl> <chr> <dbl> <dbl>
#> 1 Syncope-01 Adults 3 3 1 100% 0.310 1
#> 2 Syncope-01 Peds 2 2 1 100% 0.198 1