Filters data down to the target populations for Syncope-01, and categorizes records to identify needed information for the calculations.
Identifies key categories to identify potential syncope (fainting) cases based on specific criteria and calculates related ECG measures. This function segments the data by age into adult and pediatric populations.
Usage
syncope_01_population(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
vitals_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
esituation_09_col,
esituation_10_col,
esituation_11_col,
esituation_12_col,
evitals_04_col
)
Arguments
- df
Main data frame containing EMS records.
- patient_scene_table
A data frame or tibble containing only epatient and escene fields as a fact table. Default is
NULL
.- response_table
A data frame or tibble containing only the eresponse fields needed for this measure's calculations. Default is
NULL
.- situation_table
A data.frame or tibble containing only the esituation fields needed for this measure's calculations. Default is
NULL
.- vitals_table
A data.frame or tibble containing only the evitals fields needed for this measure's calculations. Default is
NULL
.- erecord_01_col
The column containing unique record identifiers for each encounter.
- incident_date_col
Column that contains the incident date. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- patient_DOB_col
Column that contains the patient's date of birth. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- epatient_15_col
Column representing the patient age (numeric).
- epatient_16_col
Column for the patient age units (e.g., "Years", "Months").
- eresponse_05_col
Column containing response type codes, specifically 911 codes.
- esituation_09_col
Column with primary symptoms associated with the patient encounter.
- esituation_10_col
Column with other associated symptoms.
- esituation_11_col
Column for primary impression code.
- esituation_12_col
Column for secondary impression codes.
- evitals_04_col
Column with ECG information if available.
Value
A list that contains the following:
a tibble with counts for each filtering step,
a tibble for each population of interest
a tibble for the initial population
a tibble for the total dataset with computations
Examples
# create tables to test correct functioning
# patient table
patient_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
incident_date = as.Date(c("2025-01-01", "2025-01-05",
"2025-02-01", "2025-01-01",
"2025-06-01")
),
patient_dob = as.Date(c("2000-01-01", "2020-01-01",
"2023-02-01", "2023-01-01",
"1970-06-01")
),
epatient_15 = c(25, 5, 2, 2, 55), # Ages
epatient_16 = c("Years", "Years", "Years", "Years", "Years")
)
# response table
response_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
eresponse_05 = rep(2205001, 5)
)
# situation table
situation_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
esituation_09 = c(rep("R55", 3), rep("R40.4", 2)),
esituation_10 = c(rep("R40.4", 2), rep("R55", 3)),
esituation_11 = c(rep("R55", 3), rep("R40.4", 2)),
esituation_12 = c(rep("R40.4", 2), rep("R55", 3)),
)
# vitals table
vitals_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
evitals_04 = rep("15 Lead", 5)
)
# test the success of the function
result <- syncope_01_population(patient_scene_table = patient_table,
response_table = response_table,
situation_table = situation_table,
vitals_table = vitals_table,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_09_col = esituation_09,
esituation_10_col = esituation_10,
esituation_11_col = esituation_11,
esituation_12_col = esituation_12,
evitals_04_col = evitals_04
)
#> Running `syncope_01_population()` [Working on 1 of 10 tasks] ●●●●─────────────…
#> Running `syncope_01_population()` [Working on 2 of 10 tasks] ●●●●●●●──────────…
#> Running `syncope_01_population()` [Working on 3 of 10 tasks] ●●●●●●●●●●───────…
#> Running `syncope_01_population()` [Working on 4 of 10 tasks] ●●●●●●●●●●●●●────…
#> Running `syncope_01_population()` [Working on 5 of 10 tasks] ●●●●●●●●●●●●●●●●─…
#> Running `syncope_01_population()` [Working on 6 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `syncope_01_population()` [Working on 7 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `syncope_01_population()` [Working on 8 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `syncope_01_population()` [Working on 9 of 10 tasks] ●●●●●●●●●●●●●●●●●…
#> Running `syncope_01_population()` [Working on 10 of 10 tasks] ●●●●●●●●●●●●●●●●…
#>
# show the results of filtering at each step
result$filter_process
#> # A tibble: 7 × 2
#> filter count
#> <chr> <int>
#> 1 911 calls 5
#> 2 Syncope cases 5
#> 3 ECG performed 5
#> 4 Adults denominator 2
#> 5 Peds denominator 3
#> 6 Initial population 5
#> 7 Total dataset 5