This function screens for potential traumatic brain injury (TBI) cases based on specific criteria in a patient dataset. It produces a subset of the data with calculated variables for TBI identification.
Usage
tbi_01_population(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
disposition_table = NULL,
vitals_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
esituation_11_col,
esituation_12_col,
transport_disposition_col,
evitals_06_col,
evitals_12_col,
evitals_16_col,
evitals_23_col,
evitals_26_col
)
Arguments
- df
A data frame or tibble containing the patient data.
- patient_scene_table
A data frame or tibble containing only epatient and escene fields as a fact table. Default is
NULL
.- response_table
A data frame or tibble containing only the eresponse fields needed for this measure's calculations. Default is
NULL
.- situation_table
A data.frame or tibble containing only the esituation fields needed for this measure's calculations. Default is
NULL
.- disposition_table
A data.frame or tibble containing only the edisposition fields needed for this measure's calculations. Default is
NULL
.- vitals_table
A data.frame or tibble containing only the evitals fields needed for this measure's calculations. Default is
NULL
.- erecord_01_col
Column name in df with the patient’s unique record ID.
- incident_date_col
Column that contains the incident date. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- patient_DOB_col
Column that contains the patient's date of birth. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- epatient_15_col
Column name in df with the patient’s age value.
- epatient_16_col
Column name in df with the patient’s age unit (e.g., years, months).
- eresponse_05_col
Column name in df with response codes for the type of EMS call.
- esituation_11_col
Column name in df with the primary provider impression.
- esituation_12_col
Column name in df with the secondary provider impression.
- transport_disposition_col
Column name in df with the transport disposition.
- evitals_06_col
Column name in df with systolic blood pressure (SBP).
- evitals_12_col
Column name in df with pulse oximetry values.
- evitals_16_col
Column name in df with ETC02 values. values.
- evitals_23_col
Column name in df with Glasgow Coma Scale (GCS) scores.
- evitals_26_col
Column name in df with AVPU (alert, verbal, painful, unresponsive) values.
Value
A list that contains the following:
a tibble with counts for each filtering step,
a tibble for each population of interest
a tibble for the initial population
a tibble for the total dataset with computations
Examples
# create tables to test correct functioning
# patient table
patient_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
incident_date = as.Date(c("2025-01-01", "2025-01-05",
"2025-02-01", "2025-01-01",
"2025-06-01")
),
patient_dob = as.Date(c("2000-01-01", "2020-01-01",
"2023-02-01", "2023-01-01",
"1970-06-01")
),
epatient_15 = c(25, 5, 2, 2, 55), # Ages
epatient_16 = c("Years", "Years", "Years", "Years", "Years")
)
# response table
response_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
eresponse_05 = rep(2205001, 5)
)
# situation table
situation_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
esituation_11 = c(rep("S02", 3), rep("S06", 2)),
esituation_12 = c(rep("S09.90", 2), rep("S06.0X9", 3)),
)
# vitals table
vitals_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
evitals_06 = c(85, 80, 100, 90, 82),
evitals_12 = c(95, 96, 97, 98, 99),
evitals_16 = c(35, 36, 37, 38, 39),
evitals_23 = rep(8, 5),
evitals_26 = c("Verbal", "Painful", "Unresponsive", "Verbal", "Painful")
)
# disposition table
disposition_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
)
# test the success of the function
result <- tbi_01_population(patient_scene_table = patient_table,
response_table = response_table,
situation_table = situation_table,
vitals_table = vitals_table,
disposition_table = disposition_table,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_11_col = esituation_11,
esituation_12_col = esituation_12,
evitals_06_col = evitals_06,
evitals_12_col = evitals_12,
evitals_16_col = evitals_16,
evitals_23_col = evitals_23,
evitals_26_col = evitals_26,
transport_disposition_col = edisposition_30
)
#> Running `tbi_01_population()` [Working on 1 of 15 tasks] ●●●──────────────────…
#> Running `tbi_01_population()` [Working on 2 of 15 tasks] ●●●●●────────────────…
#> Running `tbi_01_population()` [Working on 5 of 15 tasks] ●●●●●●●●●●●──────────…
#> Running `tbi_01_population()` [Working on 6 of 15 tasks] ●●●●●●●●●●●●●────────…
#> Running `tbi_01_population()` [Working on 7 of 15 tasks] ●●●●●●●●●●●●●●●──────…
#> Running `tbi_01_population()` [Working on 8 of 15 tasks] ●●●●●●●●●●●●●●●●●────…
#> Running `tbi_01_population()` [Working on 9 of 15 tasks] ●●●●●●●●●●●●●●●●●●●──…
#> Running `tbi_01_population()` [Working on 10 of 15 tasks] ●●●●●●●●●●●●●●●●●●●●…
#> Running `tbi_01_population()` [Working on 12 of 15 tasks] ●●●●●●●●●●●●●●●●●●●●…
#> Running `tbi_01_population()` [Working on 13 of 15 tasks] ●●●●●●●●●●●●●●●●●●●●…
#> Running `tbi_01_population()` [Working on 14 of 15 tasks] ●●●●●●●●●●●●●●●●●●●●…
#> Running `tbi_01_population()` [Working on 15 of 15 tasks] ●●●●●●●●●●●●●●●●●●●●…
#>
# show the results of filtering at each step
result$filter_process
#> # A tibble: 10 × 2
#> filter count
#> <chr> <int>
#> 1 911 calls 5
#> 2 TBI cases 5
#> 3 GCS < 15 5
#> 4 AVPU is verbal, painful, or unresponsive 5
#> 5 Transports 5
#> 6 Oxygen level, ETC02, SBP are documented 5
#> 7 Adults denominator 2
#> 8 Peds denominator 3
#> 9 Initial population 5
#> 10 Total dataset 5