Skip to contents

This function calculates the Trauma-08 measure, which evaluates the

Usage

trauma_08(
  df = NULL,
  patient_scene_table = NULL,
  response_table = NULL,
  situation_table = NULL,
  disposition_table = NULL,
  vitals_table = NULL,
  erecord_01_col,
  incident_date_col = NULL,
  patient_DOB_col = NULL,
  epatient_15_col,
  epatient_16_col,
  esituation_02_col,
  eresponse_05_col,
  transport_disposition_col,
  evitals_06_col,
  evitals_14_col,
  evitals_23_col,
  confidence_interval = FALSE,
  method = c("wilson", "clopper-pearson"),
  conf.level = 0.95,
  correct = TRUE,
  ...
)

Arguments

df

A data frame or tibble containing EMS data with all relevant columns. Default is NULL.

patient_scene_table

A data frame or tibble containing only epatient and escene fields as a fact table. Default is NULL.

response_table

A data frame or tibble containing only the eresponse fields needed for this measure's calculations. Default is NULL.

situation_table

A data frame or tibble containing only the esituation fields needed for this measure's calculations. Default is NULL.

disposition_table

A data frame or tibble containing only the edisposition fields needed for this measure's calculations. Default is NULL.

vitals_table

A data frame or tibble containing only the evitals fields needed for this measure's calculations. Default is NULL.

erecord_01_col

A column specifying unique patient records.

incident_date_col

Column that contains the incident date. This defaults to NULL as it is optional in case not available due to PII restrictions.

patient_DOB_col

Column that contains the patient's date of birth. This defaults to NULL as it is optional in case not available due to PII restrictions.

epatient_15_col

A column indicating the patient’s age in numeric form.

epatient_16_col

A column specifying the unit of patient age (e.g., "Years", "Days").

esituation_02_col

A column containing information about the nature of the patient’s condition (e.g., injury type).

eresponse_05_col

A column specifying the type of response (e.g., 911 codes).

transport_disposition_col

A column specifying transport disposition for the patient.

evitals_06_col

A column containing systolic blood pressure (SBP) data from initial vital signs.

evitals_14_col

A column containing respiratory rate data from initial vital signs.

evitals_23_col

A column containing total Glasgow Coma Scale (GCS) scores from initial vital signs.

confidence_interval

[Experimental] Logical. If TRUE, the function calculates a confidence interval for the proportion estimate.

method

[Experimental]Character. Specifies the method used to calculate confidence intervals. Options are "wilson" (Wilson score interval) and "clopper-pearson" (exact binomial interval). Partial matching is supported, so "w" and "c" can be used as shorthand.

conf.level

[Experimental]Numeric. The confidence level for the interval, expressed as a proportion (e.g., 0.95 for a 95% confidence interval). Defaults to 0.95.

correct

[Experimental]Logical. If TRUE, applies a continuity correction to the Wilson score interval when method = "wilson". Defaults to TRUE.

...

optional additional arguments to pass onto dplyr::summarize.

Value

A data.frame summarizing results for two population groups (All, Adults and Peds) with the following columns:

  • pop: Population type (All, Adults, and Peds).

  • numerator: Count of incidents meeting the measure.

  • denominator: Total count of included incidents.

  • prop: Proportion of incidents meeting the measure.

  • prop_label: Proportion formatted as a percentage with a specified number of decimal places.

  • lower_ci: Lower bound of the confidence interval for prop (if confidence_interval = TRUE).

  • upper_ci: Upper bound of the confidence interval for prop (if confidence_interval = TRUE).

Author

Nicolas Foss, Ed.D., MS

Examples


# Synthetic test data
  test_data <- tibble::tibble(
    erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
    epatient_15 = c(34, 5, 45, 2, 60),  # Ages
    epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
    eresponse_05 = rep(2205001, 5),
    esituation_02 = rep("Yes", 5),
    evitals_06 = c(100, 90, 80, 70, 85),
    evitals_14 = c(30, 9, 8, 7, 31),
    evitals_23 = c(6, 7, 8, 8, 7),
    edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
  )

  # Run function with the first and last pain score columns
  # Return 95% confidence intervals using the Wilson method
  trauma_08(
    df = test_data,
    erecord_01_col = erecord_01,
    incident_date_col = NULL,
    patient_DOB_col = NULL,
    epatient_15_col = epatient_15,
    epatient_16_col = epatient_16,
    eresponse_05_col = eresponse_05,
    esituation_02_col = esituation_02,
    evitals_06_col = evitals_06,
    evitals_14_col = evitals_14,
    evitals_23_col = evitals_23,
    transport_disposition_col = edisposition_30,
    confidence_interval = TRUE
  )
#> 
#> ── Trauma-08 ───────────────────────────────────────────────────────────────────
#> 
#> ── Gathering Records for Trauma-08 ──
#> 
#> Running `trauma_08_population()`  [Working on 1 of 12 tasks] ●●●───────────────
#> Running `trauma_08_population()`  [Working on 2 of 12 tasks] ●●●●●●────────────
#> Running `trauma_08_population()`  [Working on 3 of 12 tasks] ●●●●●●●●●─────────
#> Running `trauma_08_population()`  [Working on 4 of 12 tasks] ●●●●●●●●●●●───────
#> Running `trauma_08_population()`  [Working on 7 of 12 tasks] ●●●●●●●●●●●●●●●●●●
#> Running `trauma_08_population()`  [Working on 8 of 12 tasks] ●●●●●●●●●●●●●●●●●●
#> Running `trauma_08_population()`  [Working on 9 of 12 tasks] ●●●●●●●●●●●●●●●●●●
#> Running `trauma_08_population()`  [Working on 10 of 12 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_08_population()`  [Working on 11 of 12 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_08_population()`  [Working on 12 of 12 tasks] ●●●●●●●●●●●●●●●●●
#> 
#> 
#> 
#> ── Calculating Trauma-08 ──
#> 
#> 
#>  Function completed in 0.15s.
#> 
#> Warning: In `prop.test()`: Chi-squared approximation may be incorrect for any n < 10.
#> # A tibble: 2 × 8
#>   measure   pop    numerator denominator  prop prop_label lower_ci upper_ci
#>   <chr>     <chr>      <int>       <int> <dbl> <chr>         <dbl>    <dbl>
#> 1 Trauma-08 Adults         3           3     1 100%          0.310        1
#> 2 Trauma-08 Peds           2           2     1 100%          0.198        1