Skip to contents

This function processes EMS data to generate a set of binary variables indicating whether specific trauma triage criteria are met. The output #' is a data frame enriched with these indicators for further analysis. The final outcome is whether or not the EMS record documents the use of #' a pre-hospital trauma activation.

Usage

trauma_14(
  df = NULL,
  patient_scene_table = NULL,
  response_table = NULL,
  situation_table = NULL,
  vitals_table = NULL,
  exam_table = NULL,
  procedures_table = NULL,
  injury_table = NULL,
  disposition_table = NULL,
  erecord_01_col,
  incident_date_col = NULL,
  patient_DOB_col = NULL,
  epatient_15_col,
  epatient_16_col,
  esituation_02_col,
  eresponse_05_col,
  eresponse_10_col,
  transport_disposition_col,
  edisposition_24_col,
  evitals_06_col,
  evitals_10_col,
  evitals_12_col,
  evitals_14_col,
  evitals_15_col,
  evitals_21_col,
  eexam_16_col,
  eexam_20_col,
  eexam_23_col,
  eexam_25_col,
  eprocedures_03_col,
  einjury_01_col,
  einjury_03_col,
  einjury_04_col,
  einjury_09_col,
  ...
)

Arguments

df

A data frame or tibble containing EMS data with all relevant columns.

patient_scene_table

A data frame or tibble containing fields from epatient and escene needed for this measure's calculations.

response_table

A data frame or tibble containing fields from eresponse needed for this measure's calculations.

situation_table

A data frame or tibble containing fields from esituation needed for this measure's calculations.

vitals_table

A data frame or tibble containing fields from evitals needed for this measure's calculations.

exam_table

A data frame or tibble containing fields from eexam needed for this measure's calculations.

procedures_table

A data frame or tibble containing fields from eprocedures needed for this measure's calculations.

injury_table

A data frame or tibble containing fields from einjury needed for this measure's calculations.

disposition_table

A data frame or tibble containing fields from edisposition needed for this measure's calculations.

erecord_01_col

The column representing the EMS record unique identifier.

incident_date_col

Column that contains the incident date. This defaults to NULL as it is optional in case not available due to PII restrictions.

patient_DOB_col

Column that contains the patient's date of birth. This defaults to NULL as it is optional in case not available due to PII restrictions.

epatient_15_col

The column for patient age numeric value.

epatient_16_col

The column for patient age unit (e.g., "Years", "Months").

esituation_02_col

The column containing information on the presence of injury.

eresponse_05_col

The column representing the 911 response type.

eresponse_10_col

Column name containing scene delay information.

transport_disposition_col

The column for patient transport disposition.

edisposition_24_col

Column name containing pre-hospital trauma alert information.

evitals_06_col

Column name containing systolic blood pressure (SBP) values.

evitals_10_col

Column name containing heart rate values.

evitals_12_col

Column name containing pulse oximetry values.

evitals_14_col

Column name containing capillary refill information.

evitals_15_col

Column name containing respiratory effort values.

evitals_21_col

Column name containing Glasgow Coma Scale (GCS) Motor values.

eexam_16_col

Column name containing extremities assessment details.

eexam_20_col

Column name containing neurological assessment details.

eexam_23_col

Column name containing lung assessment details.

eexam_25_col

Column name containing chest assessment details.

eprocedures_03_col

Column name containing airway management or tourniquet usage details.

einjury_01_col

Column name containing injury cause details.

einjury_03_col

Column name containing trauma triage steps 1 and 2 information.

einjury_04_col

Column name containing trauma triage steps 3 and 4 information.

einjury_09_col

Column name containing fall height information.

...

Additional arguments passed to helper functions for further customization.

Value

A tibble summarizing results for three age groups (< 10 yrs, 10–65 yrs, and >= 65 yrs) with the following columns:

measure: The name of the measure being calculated. pop: Population type (< 10 yrs, 10–65 yrs, >= 65 yrs). numerator: Count of incidents where a pre-hospital trauma alert was called. denominator: Total count of incidents. prop: Proportion of incidents where a pre-hospital trauma alert was called. prop_label: Proportion formatted as a percentage with a specified number of decimal places.

Author

Nicolas Foss, Ed.D., MS

Examples


# Synthetic test data
  test_data <- tibble::tibble(
    erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
    epatient_15 = c(34, 5, 45, 2, 60),  # Ages
    epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
    eresponse_05 = rep(2205001, 5),
    eresponse_10 = rep(2210011, 5),
    esituation_02 = rep("Yes", 5),
    evitals_06 = c(100, 90, 80, 70, 85),
    evitals_10 = c(110, 89, 88, 71, 85),
    evitals_12 = c(50, 60, 70, 80, 75),
    evitals_14 = c(30, 9, 8, 7, 31),
    evitals_15 = c("apneic", "labored", "rapid", "shallow", "weak/agonal"),
    evitals_21 = c(5, 4, 3, 2, 1),
    eexam_16 = c(3516043, 3516067, 3516043, 3516067, 3516067),
    eexam_20 = c(3520045, 3520043, 3520019, 3520017, 3520017),
    eexam_23 = c(3523011, 3523003, 3523001, 3523011, 3523003),
    eexam_25 = c(3525039, 3525023, 3525005, 3525039, 3525023),
    edisposition_24 = c(4224017, 4224003, 4224017, 4224003, 4224017),
    edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007),
    eprocedures_03 = c(424979004, 427753009, 429705000, 47545007, 243142003),
    einjury_01 = c("V20", "V36", "V86", "V39", "V32"),
    einjury_03 = c(2903011, 2903009, 2903005, 3903003, 2903001),
    einjury_04 = c(2904013, 2904011, 2904009, 2904007, 2904001),
    einjury_09 = c(11, 12, 13, 14, 15)
  )

  # Run function with the first and last pain score columns
  trauma_14(
    df = test_data,
    erecord_01_col = erecord_01,
    epatient_15_col = epatient_15,
    epatient_16_col = epatient_16,
    eresponse_05_col = eresponse_05,
    eresponse_10_col = eresponse_10,
    esituation_02_col = esituation_02,
    evitals_06_col = evitals_06,
    evitals_10_col = evitals_10,
    evitals_12_col = evitals_12,
    evitals_14_col = evitals_14,
    evitals_15_col = evitals_15,
    evitals_21_col = evitals_21,
    eexam_16_col = eexam_16,
    eexam_20_col = eexam_20,
    eexam_23_col = eexam_23,
    eexam_25_col = eexam_25,
    edisposition_24_col = edisposition_24,
    transport_disposition_col = edisposition_30,
    eprocedures_03_col = eprocedures_03,
    einjury_01_col = einjury_01,
    einjury_03_col = einjury_03,
    einjury_04_col = einjury_04,
    einjury_09_col = einjury_09
  )
#> 
#> ── Trauma-14 ───────────────────────────────────────────────────────────────────
#> 
#> ── Gathering Records for Trauma-14 ──
#> 
#> Running `trauma_14_population()`  [Working on 1 of 33 tasks] ●●────────────────
#> Running `trauma_14_population()`  [Working on 2 of 33 tasks] ●●●───────────────
#> Running `trauma_14_population()`  [Working on 3 of 33 tasks] ●●●●──────────────
#> Running `trauma_14_population()`  [Working on 4 of 33 tasks] ●●●●●─────────────
#> Running `trauma_14_population()`  [Working on 5 of 33 tasks] ●●●●●●────────────
#> Running `trauma_14_population()`  [Working on 6 of 33 tasks] ●●●●●●────────────
#> Running `trauma_14_population()`  [Working on 7 of 33 tasks] ●●●●●●●───────────
#> Running `trauma_14_population()`  [Working on 8 of 33 tasks] ●●●●●●●●──────────
#> Running `trauma_14_population()`  [Working on 9 of 33 tasks] ●●●●●●●●●─────────
#> Running `trauma_14_population()`  [Working on 10 of 33 tasks] ●●●●●●●●●●───────
#> Running `trauma_14_population()`  [Working on 11 of 33 tasks] ●●●●●●●●●●●──────
#> Running `trauma_14_population()`  [Working on 12 of 33 tasks] ●●●●●●●●●●●●─────
#> Running `trauma_14_population()`  [Working on 13 of 33 tasks] ●●●●●●●●●●●●●────
#> Running `trauma_14_population()`  [Working on 14 of 33 tasks] ●●●●●●●●●●●●●●───
#> Running `trauma_14_population()`  [Working on 15 of 33 tasks] ●●●●●●●●●●●●●●●──
#> Running `trauma_14_population()`  [Working on 16 of 33 tasks] ●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 17 of 33 tasks] ●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 18 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 19 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 20 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 21 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 22 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 23 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 24 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 25 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 26 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 27 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 28 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 29 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 30 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 31 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 32 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> Running `trauma_14_population()`  [Working on 33 of 33 tasks] ●●●●●●●●●●●●●●●●●
#> 
#> 
#> 
#> ── Calculating Trauma-14 ──
#> 
#> 
#>  Function completed in 0.47s.
#> 
#> # A tibble: 3 × 6
#>   measure   pop       numerator denominator  prop prop_label
#>   <chr>     <chr>         <int>       <int> <dbl> <chr>     
#> 1 Trauma-14 >= 65 yrs         0           0     0 0%        
#> 2 Trauma-14 10-64 yrs         3           3     1 100%      
#> 3 Trauma-14 < 10 yrs          2           2     1 100%