Skip to contents

This function calculates the TTR-01 measure, which evaluates the completeness of vitals documentation for patients not experiencing cardiac arrest who were also not transported during a 911 response. It determines the total population, adult population, and pediatric population meeting the criteria for the TTR_01 measure.

Usage

ttr_01(
  df = NULL,
  patient_scene_table = NULL,
  response_table = NULL,
  disposition_table = NULL,
  vitals_table = NULL,
  arrest_table = NULL,
  erecord_01_col,
  incident_date_col = NULL,
  patient_DOB_col = NULL,
  epatient_15_col,
  epatient_16_col,
  eresponse_05_col,
  transport_disposition_col,
  earrest_01_col,
  evitals_06_col,
  evitals_07_col,
  evitals_10_col,
  evitals_12_col,
  evitals_14_col,
  evitals_23_col,
  evitals_26_col,
  ...
)

Arguments

df

A data frame or tibble containing the dataset to analyze. Default is NULL.

patient_scene_table

A data frame or tibble containing only epatient and escene fields as a fact table. Default is NULL.

response_table

A data frame or tibble containing only the eresponse fields needed for this measure's calculations. Default is NULL.

disposition_table

A data frame or tibble containing only the edisposition fields needed for this measure's calculations. Default is NULL.

vitals_table

A data frame or tibble containing only the evitals fields needed for this measure's calculations. Default is NULL.

arrest_table

A data frame or tibble containing only the earrest fields needed for this measure's calculations. Default is NULL.

erecord_01_col

A column specifying unique patient records.

incident_date_col

Column that contains the incident date. This defaults to NULL as it is optional in case not available due to PII restrictions.

patient_DOB_col

Column that contains the patient's date of birth. This defaults to NULL as it is optional in case not available due to PII restrictions.

epatient_15_col

A column indicating the patient’s age in numeric form.

epatient_16_col

A column specifying the unit of patient age (e.g., "Years", "Days").

eresponse_05_col

A column specifying the type of response (e.g., 911 codes).

transport_disposition_col

A column specifying transport disposition for the patient.

earrest_01_col

A column containing cardiac arrest data.

evitals_06_col

A column containing systolic blood pressure (SBP) data from initial vital signs.

evitals_07_col

A column containing diastolic blood pressure (DBP) data from initial vital signs.

evitals_10_col

A column containing heart rate data from initial vital signs.

evitals_12_col

A column containing spO2 data from the initial vital signs.

evitals_14_col

A column containing respiratory rate data from initial vital signs.

evitals_23_col

A column containing total Glasgow Coma Scale (GCS) scores from initial vital signs.

evitals_26_col

A column containing alert, verbal, painful, unresponsive (AVPU) vital signs.

...

Additional arguments passed to the summarize_measure function.

Value

A tibble summarizing results for three population groups (Adults, and Peds) with the following columns:

measure: The name of the measure being calculated. pop: Population type (Adults, Peds). numerator: Count of incidents where all applicable vital signs are taken. denominator: Total count of incidents. prop: Proportion of incidents where all applicable vital signs are taken. prop_label: Proportion formatted as a percentage with a specified number of decimal places.

Author

Nicolas Foss, Ed.D., MS

Examples


# Synthetic test data
  test_data <- tibble::tibble(
    erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
    incident_date = as.Date(c("2025-01-01", "2025-01-05", "2025-02-01",
    "2025-01-01", "2025-06-01")),
    patient_dob = as.Date(c("2000-01-01", "2020-01-01", "2023-02-01",
    "2023-01-01", "1970-06-01")),
    epatient_15 = c(34, 5, 45, 2, 60),  # Ages
    epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
    eresponse_05 = rep(2205001, 5),
    earrest_01 = rep("No", 5),
    evitals_06 = c(100, 90, 80, 70, 85),
    evitals_07 = c(80, 90, 50, 60, 87),
    evitals_10 = c(110, 89, 88, 71, 85),
    evitals_12 = c(50, 60, 70, 80, 75),
    evitals_14 = c(30, 9, 8, 7, 31),
    evitals_23 = c(6, 7, 8, 9, 10),
    evitals_26 = c(3326007, 3326005, 3326003, 3326001, 3326007),
    edisposition_30 = c(4230013, 4230009, 4230013, 4230009, 4230013)
  )

  # Run function with the first and last pain score columns
  ttr_01(
    df = test_data,
    erecord_01_col = erecord_01,
    incident_date_col = incident_date,
    patient_DOB_col = patient_dob,
    epatient_15_col = epatient_15,
    epatient_16_col = epatient_16,
    eresponse_05_col = eresponse_05,
    earrest_01_col = earrest_01,
    evitals_06_col = evitals_06,
    evitals_07_col = evitals_07,
    evitals_10_col = evitals_10,
    evitals_12_col = evitals_12,
    evitals_14_col = evitals_14,
    evitals_23_col = evitals_23,
    evitals_26_col = evitals_26,
    transport_disposition_col = edisposition_30
  )
#> 
#> ── TTR-01 ──────────────────────────────────────────────────────────────────────
#> 
#> ── Gathering Records for TTR-01 ──
#> 
#> Running `ttr_01_population()`  [Working on 1 of 13 tasks] ●●●──────────────────
#> Running `ttr_01_population()`  [Working on 2 of 13 tasks] ●●●●●●───────────────
#> Running `ttr_01_population()`  [Working on 3 of 13 tasks] ●●●●●●●●─────────────
#> Running `ttr_01_population()`  [Working on 4 of 13 tasks] ●●●●●●●●●●───────────
#> Running `ttr_01_population()`  [Working on 5 of 13 tasks] ●●●●●●●●●●●●●────────
#> Running `ttr_01_population()`  [Working on 6 of 13 tasks] ●●●●●●●●●●●●●●●──────
#> Running `ttr_01_population()`  [Working on 7 of 13 tasks] ●●●●●●●●●●●●●●●●●────
#> Running `ttr_01_population()`  [Working on 8 of 13 tasks] ●●●●●●●●●●●●●●●●●●●──
#> Running `ttr_01_population()`  [Working on 9 of 13 tasks] ●●●●●●●●●●●●●●●●●●●●●
#> Running `ttr_01_population()`  [Working on 10 of 13 tasks] ●●●●●●●●●●●●●●●●●●●●
#> Running `ttr_01_population()`  [Working on 13 of 13 tasks] ●●●●●●●●●●●●●●●●●●●●
#> 
#> 
#> 
#> ── Calculating TTR-01 ──
#> 
#> 
#>  Function completed in 0.16s.
#> 
#> # A tibble: 2 × 6
#>   measure pop    numerator denominator  prop prop_label
#>   <chr>   <chr>      <int>       <int> <dbl> <chr>     
#> 1 TTR-01  Adults         3           3     1 100%      
#> 2 TTR-01  Peds           3           3     1 100%