Filters data down to the target populations for TTR-01, and categorizes records to identify needed information for the calculations.
Identifies key categories to records that are 911 requests for patients not transported by EMS during which a basic set of vital signs is documented based on specific criteria and calculates related ECG measures. This function segments the data by age into adult and pediatric populations.
Usage
ttr_01_population(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
disposition_table = NULL,
vitals_table = NULL,
arrest_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
transport_disposition_col,
earrest_01_col,
evitals_06_col,
evitals_07_col,
evitals_10_col,
evitals_12_col,
evitals_14_col,
evitals_23_col,
evitals_26_col
)
Arguments
- df
A data frame or tibble containing the dataset to analyze. Default is
NULL
.- patient_scene_table
A data frame or tibble containing only epatient and escene fields as a fact table. Default is
NULL
.- response_table
A data frame or tibble containing only the eresponse fields needed for this measure's calculations. Default is
NULL
.- disposition_table
A data frame or tibble containing only the edisposition fields needed for this measure's calculations. Default is
NULL
.- vitals_table
A data frame or tibble containing only the evitals fields needed for this measure's calculations. Default is
NULL
.- arrest_table
A data frame or tibble containing only the earrest fields needed for this measure's calculations. Default is
NULL
.- erecord_01_col
A column specifying unique patient records.
- incident_date_col
Column that contains the incident date. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- patient_DOB_col
Column that contains the patient's date of birth. This defaults to
NULL
as it is optional in case not available due to PII restrictions.- epatient_15_col
A column indicating the patient’s age in numeric form.
- epatient_16_col
A column specifying the unit of patient age (e.g., "Years", "Days").
- eresponse_05_col
A column specifying the type of response (e.g., 911 codes).
- transport_disposition_col
A column specifying transport disposition for the patient.
- earrest_01_col
A column containing cardiac arrest data.
- evitals_06_col
A column containing systolic blood pressure (SBP) data from initial vital signs.
- evitals_07_col
A column containing diastolic blood pressure (DBP) data from initial vital signs.
- evitals_10_col
A column containing heart rate data from initial vital signs.
- evitals_12_col
A column containing spO2 data from the initial vital signs.
- evitals_14_col
A column containing respiratory rate data from initial vital signs.
- evitals_23_col
A column containing total Glasgow Coma Scale (GCS) scores from initial vital signs.
- evitals_26_col
A column containing alert, verbal, painful, unresponsive (AVPU) vital signs.
Value
A list that contains the following:
a tibble with counts for each filtering step,
a tibble for each population of interest
a tibble for the initial population
a tibble for the total dataset with computations
Examples
# create tables to test correct functioning
# patient table
patient_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
incident_date = as.Date(c("2025-01-01", "2025-01-05", "2025-02-01",
"2025-01-01", "2025-06-01")),
patient_dob = as.Date(c("2000-01-01", "2020-01-01", "2023-02-01",
"2023-01-01", "1970-06-01")),
epatient_15 = c(25, 5, 2, 2, 55), # Ages
epatient_16 = c("Years", "Years", "Years", "Years", "Years")
)
# response table
response_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
eresponse_05 = rep(2205001, 5),
)
# arrest table
arrest_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
earrest_01 = rep("No", 5)
)
# vitals table
vitals_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
evitals_06 = c(100, 90, 80, 70, 85),
evitals_07 = c(80, 90, 50, 60, 87),
evitals_10 = c(110, 89, 88, 71, 85),
evitals_12 = c(50, 60, 70, 80, 75),
evitals_14 = c(30, 9, 8, 7, 31),
evitals_23 = c(6, 7, 8, 9, 10),
evitals_26 = c(3326007, 3326005, 3326003, 3326001, 3326007),
)
# disposition table
disposition_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
edisposition_30 = c(4230013, 4230009, 4230013, 4230009, 4230013)
)
# test the success of the function
result <- ttr_01_population(patient_scene_table = patient_table,
response_table = response_table,
arrest_table = arrest_table,
vitals_table = vitals_table,
disposition_table = disposition_table,
erecord_01_col = erecord_01,
incident_date_col = incident_date,
patient_DOB_col = patient_dob,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
earrest_01_col = earrest_01,
evitals_06_col = evitals_06,
evitals_07_col = evitals_07,
evitals_10_col = evitals_10,
evitals_12_col = evitals_12,
evitals_14_col = evitals_14,
evitals_23_col = evitals_23,
evitals_26_col = evitals_26,
transport_disposition_col = edisposition_30
)
#> Running `ttr_01_population()` [Working on 1 of 13 tasks] ●●●──────────────────…
#> Running `ttr_01_population()` [Working on 2 of 13 tasks] ●●●●●●───────────────…
#> Running `ttr_01_population()` [Working on 3 of 13 tasks] ●●●●●●●●─────────────…
#> Running `ttr_01_population()` [Working on 4 of 13 tasks] ●●●●●●●●●●───────────…
#> Running `ttr_01_population()` [Working on 5 of 13 tasks] ●●●●●●●●●●●●●────────…
#> Running `ttr_01_population()` [Working on 6 of 13 tasks] ●●●●●●●●●●●●●●●──────…
#> Running `ttr_01_population()` [Working on 7 of 13 tasks] ●●●●●●●●●●●●●●●●●────…
#> Running `ttr_01_population()` [Working on 8 of 13 tasks] ●●●●●●●●●●●●●●●●●●●──…
#> Running `ttr_01_population()` [Working on 9 of 13 tasks] ●●●●●●●●●●●●●●●●●●●●●…
#> Running `ttr_01_population()` [Working on 10 of 13 tasks] ●●●●●●●●●●●●●●●●●●●●…
#> Running `ttr_01_population()` [Working on 13 of 13 tasks] ●●●●●●●●●●●●●●●●●●●●…
#>
# show the results of filtering at each step
result$filter_process
#> # A tibble: 8 × 2
#> filter count
#> <chr> <int>
#> 1 911 calls 5
#> 2 Non-transports 5
#> 3 Non-cardiac arrest 5
#> 4 Non-null SBP, DBP, HR, SPO2, RR, and GCS or AVPU 5
#> 5 Adults denominator 2
#> 6 Peds denominator 3
#> 7 Initial population 5
#> 8 Total dataset 5