Bin-Level Summary for Relative Mortality Metric (RMM)
Source:R/relative_mortality.R
rm_bin_summary.Rd
Calculates a bin-level summary for the Relative Mortality Metric (RMM) from Napoli et al. (2017) by grouping data into bins based on survival probabilities (Ps) and summarizing outcomes within each bin. This function returns statistics such as total alive, total dead, estimated mortality, anticipated mortality, and confidence intervals for each bin. For more information on the methods used in this function, see as well Schroeder et al. (2019), and Kassar et al. (2016).
The Relative Mortality Metric (RMM) quantifies the performance of a center in comparison to the anticipated mortality based on the TRISS national benchmark. The RMM measures the difference between observed and expected mortality, with a range from -1 to 1.
An RMM of 0 indicates that the observed mortality aligns with the expected national benchmark across all acuity levels.
An RMM greater than 0 indicates better-than-expected performance, where the center is outperforming the national benchmark.
An RMM less than 0 indicates under-performance, where the center’s observed mortality is higher than the expected benchmark.
This metric helps assess how a center's mortality compares to the national
standards, guiding quality improvement efforts.rm_bin_summary()
utilizes
bootstrap sampling to calculate the confidence intervals via the standard
error method.
Usage
rm_bin_summary(
data,
Ps_col,
outcome_col,
group_vars = NULL,
n_samples = 100,
Divisor1 = 5,
Divisor2 = 5,
Threshold_1 = 0.9,
Threshold_2 = 0.99,
seed = NULL
)
Arguments
- data
A data frame or tibble containing the data.
- Ps_col
The name of the column containing the survival probabilities (Ps). Should be numeric on a scale from 0 to 1.
- outcome_col
The name of the column containing the outcome data. It should be binary, with values indicating patient survival. A value of
1
should represent "alive" (survived), while0
should represent "dead" (did not survive). Ensure the column contains only these two possible values.- group_vars
Optional character vector specifying grouping variables for stratified analysis. If
NULL
, the calculation is performed on the entire dataset.- n_samples
A numeric value indicating the number of bootstrap samples to take from the data source.
- Divisor1
A divisor used for binning the survival probabilities (default is 5).
- Divisor2
A second divisor used for binning the survival probabilities (default is 5).
- Threshold_1
The first threshold for dividing the survival probabilities (default is 0.9).
- Threshold_2
The second threshold for dividing the survival probabilities (default is 0.99).
- seed
Optional numeric value to set a random seed for reproducibility. If
NULL
(default), no seed is set.
Value
A tibble containing bin-level statistics including:
bin_number
: The bin to which each record was assigned.TA_b
: Total alive in each bin (number of patients who survived).TD_b
: Total dead in each bin (number of patients who did not survive).N_b
: Total number of patients in each bin.EM_b
: Estimated mortality rate for each bin (TD_b / (TA_b + TD_b)).AntiS_b
: The anticipated survival rate for each bin.AntiM_b
: The anticipated mortality rate for each bin.bin_start
: The lower bound of the survival probability range for each bin.bin_end
: The upper bound of the survival probability range for each bin.midpoint
: The midpoint of the bin range (calculated as (bin_start + bin_end) / 2).R_b
: The width of each bin (bin_end - bin_start).population_RMM_LL
: The lower bound of the 95% confidence interval for the population RMM.population_RMM
: The final calculated Relative Mortality Metric for the population existing indata
.population_RMM_UL
: The upper bound of the 95% confidence interval for the population RMM.population_CI
: The confidence interval width for the population RMM.bootstrap_RMM_LL
: The lower bound of the 95% confidence interval for the bootstrap RMM.bootstrap_RMM
: The average RMM value calculated for the bootstrap sample.bootstrap_RMM_UL
: The upper bound of the 95% confidence interval for the bootstrap RMM.bootstrap_CI
: The width of the 95% confidence interval for the bootstrap RMM.
Details
Like other statistical computing functions, rm_bin_summary()
is happiest
without missing data. It is best to pass complete probability of survival
and outcome data to the function for optimal performance. With smaller
datasets, this is especially helpful. However, rm_bin_summary()
will
handle NA
values and throw a warning about missing probability of survival
values, if any exist in Ps_col
.
Due to the use of bootstrap sampling within the function, users should
consider setting the random number seed within rm_bin_summary()
using the
seed
argument for reproducibility.
References
Kassar, O.M., Eklund, E.A., Barnhardt, W.F., Napoli, N.J., Barnes, L.E., Young, J.S. (2016). Trauma survival margin analysis: A dissection of trauma center performance through initial lactate. The American Surgeon, 82(7), 649-653. doi:10.1177/000313481608200733
Napoli, N. J., Barnhardt, W., Kotoriy, M. E., Young, J. S., & Barnes, L. E. (2017). Relative mortality analysis: A new tool to evaluate clinical performance in trauma centers. IISE Transactions on Healthcare Systems Engineering, 7(3), 181–191. doi:10.1080/24725579.2017.1325948
Schroeder, P. H., Napoli, N. J., Barnhardt, W. F., Barnes, L. E., & Young, J. S. (2018). Relative mortality analysis of the “golden hour”: A comprehensive acuity stratification approach to address disagreement in current literature. Prehospital Emergency Care, 23(2), 254–262. doi:10.1080/10903127.2018.1489021
See also
rmm()
, and nonlinear_bins()
Examples
# Generate example data with high negative skewness
set.seed(10232015)
# Parameters
n_patients <- 10000 # Total number of patients
Ps <- plogis(rnorm(n_patients, mean = 2,
sd = 1.5)
) # Skewed towards higher values
# Simulate survival outcomes based on Ps
survival_outcomes <- rbinom(n_patients,
size = 1,
prob = Ps
)
# Create data frame
data <- data.frame(Ps = Ps, survival = survival_outcomes) |>
dplyr::mutate(death = dplyr::if_else(survival == 1, 0, 1))
# Example usage of the `rm_bin_summary` function
rm_bin_summary(data = data, Ps_col = Ps,
outcome_col = survival,
n_samples = 10,
Divisor1 = 4,
Divisor2 = 4
)
#> # A tibble: 9 × 19
#> bin_number TA_b TD_b N_b EM_b AntiS_b AntiM_b bin_start bin_end
#> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 565 832 1397 0.596 0.417 0.583 0.00814 0.592
#> 2 2 969 427 1396 0.306 0.681 0.319 0.592 0.756
#> 3 3 1096 300 1396 0.215 0.804 0.196 0.756 0.846
#> 4 4 1206 188 1394 0.135 0.875 0.125 0.846 0.900
#> 5 5 898 94 992 0.0948 0.916 0.084 0.900 0.932
#> 6 6 945 47 992 0.0474 0.944 0.056 0.932 0.955
#> 7 7 961 31 992 0.0312 0.965 0.035 0.955 0.974
#> 8 8 983 9 992 0.00907 0.982 0.018 0.974 0.990
#> 9 9 446 3 449 0.00668 0.994 0.006 0.990 1.00
#> # ℹ 10 more variables: midpoint <dbl>, R_b <dbl>, population_RMM_LL <dbl>,
#> # population_RMM <dbl>, population_RMM_UL <dbl>, population_CI <dbl>,
#> # bootstrap_RMM_LL <dbl>, bootstrap_RMM <dbl>, bootstrap_RMM_UL <dbl>,
#> # bootstrap_CI <dbl>
# Create example grouping variable (e.g., hospital)
hospital <- sample(c("Hospital A", "Hospital B"), n_patients, replace = TRUE)
# Create data frame
data <- data.frame(Ps = Ps,
survival = survival_outcomes,
hospital = hospital
) |>
dplyr::mutate(death = dplyr::if_else(survival == 1, 0, 1))
# Example usage of the `rm_bin_summary` function with grouping
rm_bin_summary(
data = data,
Ps_col = Ps,
outcome_col = survival,
group_vars = "hospital", # Stratifies by hospital
n_samples = 10,
Divisor1 = 4,
Divisor2 = 4
)
#> # A tibble: 18 × 20
#> hospital bin_number TA_b TD_b N_b EM_b AntiS_b AntiM_b bin_start
#> <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 Hospital A 1 296 428 724 0.591 0.417 0.583 0.00814
#> 2 Hospital A 2 488 201 689 0.292 0.682 0.318 0.592
#> 3 Hospital A 3 558 150 708 0.212 0.804 0.196 0.756
#> 4 Hospital A 4 591 88 679 0.130 0.876 0.124 0.846
#> 5 Hospital A 5 441 52 493 0.105 0.916 0.084 0.900
#> 6 Hospital A 6 471 20 491 0.0407 0.944 0.056 0.932
#> 7 Hospital A 7 471 20 491 0.0407 0.964 0.036 0.955
#> 8 Hospital A 8 505 5 510 0.00980 0.982 0.018 0.974
#> 9 Hospital A 9 229 2 231 0.00866 0.994 0.006 0.990
#> 10 Hospital B 1 269 404 673 0.600 0.416 0.584 0.00814
#> 11 Hospital B 2 481 226 707 0.320 0.68 0.32 0.592
#> 12 Hospital B 3 538 150 688 0.218 0.805 0.195 0.756
#> 13 Hospital B 4 615 100 715 0.140 0.875 0.125 0.846
#> 14 Hospital B 5 457 42 499 0.0842 0.917 0.083 0.900
#> 15 Hospital B 6 474 27 501 0.0539 0.944 0.056 0.932
#> 16 Hospital B 7 490 11 501 0.0220 0.965 0.035 0.955
#> 17 Hospital B 8 478 4 482 0.00830 0.983 0.017 0.974
#> 18 Hospital B 9 217 1 218 0.00459 0.994 0.006 0.990
#> # ℹ 11 more variables: bin_end <dbl>, midpoint <dbl>, R_b <dbl>,
#> # population_RMM_LL <dbl>, population_RMM <dbl>, population_RMM_UL <dbl>,
#> # population_CI <dbl>, bootstrap_RMM_LL <dbl>, bootstrap_RMM <dbl>,
#> # bootstrap_RMM_UL <dbl>, bootstrap_CI <dbl>