This function calculates System Evaluation and Quality Improvement Committee (SEQIC) Indicator 2. This indicator evaluates the proportion of trauma incidents with missing documented incident time across Level I–IV trauma centers.
Usage
seqic_indicator_2(
data,
unique_incident_id,
level,
included_levels = c("I", "II", "III", "IV"),
incident_time,
groups = NULL,
calculate_ci = NULL,
...
)
Arguments
- data
A data frame containing trauma incident records.
- unique_incident_id
Unique identifier for each record.
- level
Column indicating the trauma center designation level (e.g., I, II, III, IV).
- included_levels
Character vector indicating what facility levels to include in the analysis. Defaults to
c("I", "II", "III", "IV")
.- incident_time
The time the patient's injury occurred.
- groups
Additional columns passed as a vector of strings to
dplyr::summarize()
via the.by
argument for grouped summaries. Defaults toNULL
.- calculate_ci
If
NULL
, 95% confidence intervals will not be calculated for the performance estimates. Otherwise, options of "wilson" or "clopper-pearson" can be supplied to utilize the corresponding methods to calculate the confidence intervals for the proportions. Defaults toNULL
.- ...
Arguments passed on to
nemsqar::nemsqa_binomial_confint
conf.level
Numeric value between 0 and 1 indicating the confidence level. Defaults to 0.95 (95% confidence interval).
correct
Logical, indicating whether to apply continuity correction for Wilson intervals. Defaults to
TRUE
.
Value
A tibble summarizing SEQIC Indicator 2 results. Includes numerator, denominator, and performance rate for the indicator. 95% confidence intervals are provided optionally.
Details
This function:
Filters trauma records to those with a trauma center level of I–IV.
Deduplicates by
unique_incident_id
to ensure one record per incident.Calculates the proportion of cases missing
incident_time
.
Note
Users must ensure appropriate column names are passed and data is pre-processed to include the necessary fields without missing critical identifiers or timestamps.
Examples
# Packages
library(dplyr)
library(traumar)
# Data
data <- tibble::tibble(
incident_id = as.character(101:106),
trauma_level = c("I", "II", "III", "IV", "II", "I"),
incident_time = as.POSIXct(c("2023-01-01 12:00", NA, "2023-01-02 14:15",
NA, "2023-01-03 09:30", "2023-01-04 16:45"))
)
# Run the function
traumar::seqic_indicator_2(
data = data,
unique_incident_id = incident_id,
level = trauma_level,
incident_time = incident_time,
calculate_ci = "clopper-pearson"
)
#> # A tibble: 1 × 6
#> data numerator_2 denominator_2 seqic_2 lower_ci_2 upper_ci_2
#> <chr> <int> <int> <dbl> <dbl> <dbl>
#> 1 population/sample 2 6 0.333 0.0433 0.777